
入門 ５次方程式の解法 

 

 

 

                 

 

 

 

 

 

 

  Abel (1802-1829)       Galois (1811-1832)       Hermite (1822-1901) 

 

Abel ：1826 年 

   「４次より高次の一般方程式の代数的解法の不可能性の証明」の論文に 

   より、５次以上の代数方程式は一般には四則演算とベキ根だけで(代数的に) 

解くことはできないことを示した。 

 

Galois ：1831 年 

    「第 1 論文（le premier memoire）方程式論」 

    「第 2 論文（le second memoire）方程式論の応用」 

    これらの中で、方程式が四則演算とベキ根によって解けるための 

条件を考察し、その結果、一般の５次方程式は代数的に解けない 

ことを示した。 

     

Hermite ：1858 年 

     「Sur la resolution de l’equation du cinquieme degre」の論文により 

     ５次方程式（詳しくは 𝑥5 − 𝑥 − 𝑎 = 0 型)の楕円モジュラ－関数による 

「解の公式」を与えた。 

 

 

 

 

 



 

〖内容〗   

 

1   代数的可解性              (p3～p14) 

一般には５次方程式を代数的(四則演算とベキ根だけを使う)に 

解くことはできないが、 𝐹20  , 𝐷10   , 𝐶5  をガロア群にもつ５次 

方程式は、   𝐹20  ⊇ 𝐷10 ⊇ 𝐶5 ⊇ { 1 } を考えれば、 𝐹20 以下は 

可解群なのでこれをガロア群にもつ５次方程式は、代数的に 

解くことができる 

 

2  ルンゲの定理               (p15～p17 ) 

『 𝜆   , 𝜇  を有理数とするとき、 

𝑥5 +
5𝜇4(4𝜆+3)

𝜆2+1
 𝑥 +

4𝜇5(2𝜆+1)(4𝜆+3)

𝜆2+1
= 0  は代数的に解ける 』 

 

3  エルミ－トによる解法       (p18～p22) 

           (例) 𝑆5 をガロア群にもつ 𝑥5 − 80𝑥 + 192 = 0  の解（近似値） 

 

4  代数的解法                 (p23～p44)  

             (例 1)  𝑥5 − 20𝑥3 − 60𝑥2 − 70𝑥 − 30 = 0  の解 

       (例 2)  𝑥5 − 𝑥3 − 2𝑥2 − 2𝑥 − 1 = 0  の解 

             (例 3)  𝑥5 + 15𝑥 + 44 = 0   の解 

             (例 4)     𝑥5 + 20𝑥 + 32 = 0 の解 

(例 5)     𝑥5 − 110𝑥3 − 55𝑥2 + 2310𝑥 + 979 = 0  の解 

 

           引用、参考文献         (p45)         

 

 

 

 

 

 

 

 

 

 

 



 

 1  代数的可解性 

はじめに。 

〔分解体〕 

 体 𝐾 上(𝐾 内の係数をもつ)既約な多項式𝑓(𝑥) が 𝐾 の拡大体 𝐿 上で１次因数 

の積に分解するとき、𝐿 を𝑓(𝑥) の 𝐾 上の分解体と言う。それら分解体の中で 

最小のものを最小分解体という。（分解体と言えば、これを指すことも多い） 

たとえば、有理数体 𝑄 上既約な多項式 𝑓(𝑥) = 𝑥2 − 2 の最小分解体は、 

𝑓(𝑥) = (𝑥 + √2)(𝑥 − √2)  となるので、有理数体𝑄 に√2 を添加した拡大体 

  𝑄(√2) = {𝑎 + 𝑏√2  | 𝑎 , 𝑏 ∈ 𝑄 }  である。  

  複素数体 𝐶 は実数体 𝑅 上の既約多項式 𝑓(𝑥) = 𝑥2 + 1 の最小分解体になって 

いて、𝐶 = 𝑅(√−1) = 𝑅( 𝑖 ) といえる。 

 

〔ガロア拡大〕 

  体 𝐾 上の既約な多項式𝑓(𝑥) がその最小の分解体 𝐿 内で相異なる１次因数の 

 積に分解される（重解をもたない）とき、𝐿 を 𝐾 のガロア拡大という。 

 （詳しくは、分離拡大であり正規拡大であるものをガロア拡大。） 

 たとえば、 𝑄 上既約な 𝑓(𝑥) = 𝑥2 − 2  は、𝑄(√2) 上で、𝑓(𝑥) = (𝑥 + √2)(𝑥 − √2) なので 

𝑄(√2) は、𝑄 のガロア拡大。 

𝑄 上既約な 𝑓(𝑥) = 𝑥3 − 2  は、𝑄(√2
3

 ) = {𝑎 + 𝑏√2
3

+ 𝑐(√2
3

)
2

 | 𝑎 , 𝑏 , 𝑐 ∈ 𝑄} 上では、 

𝑓(𝑥) = (  𝑥 − √2
3

 ) (𝑥2 + √2
3

 𝑥 + (√2
3

)
2

 )  となるだけなので、𝑄(√2
3

) は、𝑄 のガロア拡大 

ではないが、 𝑄 が 1 の原始３乗根 𝜔 を含んでいる( 𝑄 → 𝑄(𝜔) )とすれば、 

𝜔3 = 1 , 𝜔 ≠ 1  , 𝜔2 + 𝜔 + 1 = 0 であって、 

              𝑄(𝜔)(√2
3

) = 𝑄(𝜔 , √2
3

 ) = {𝑠 + 𝑡 √2
3

+ 𝑢(√2
3

)
2

 |  𝑠 , 𝑡 , 𝑢 ∈ 𝑄(𝜔) } 

                = {𝑎 + 𝑏√2
3

+ 𝑐(√2
3

)
2

+ 𝑒𝜔 + 𝑓𝜔 √2
3

+ 𝑔𝜔(√2
3

)
2

 |  𝑎, 𝑏, 𝑐 , 𝑒 , 𝑓 , 𝑔 ∈ 𝑄 } 上では、 

𝑓(𝑥) = (𝑥 − √2
3

)( 𝑥 − √2
3

 𝜔)(𝑥 − √2
3

 𝜔2) となるので、𝑄(𝜔 , √2
3

 ) は、𝑄 のガロア拡大。 

なお、𝑓(𝑥) = 𝑥3 − 2  は、 𝑄(𝜔)上でも既約であり、𝑄(𝜔 , √2
3

 ) は、𝑄 (𝜔)のガロア拡大。  

 

〔自己同型写像〕 

𝐾 を体とする。𝐾 からそれ自身への(全単射な)写像 𝜎 があって、𝛼 , 𝛽 ∈ 𝐾 と 

したとき、 𝜎(𝛼 + 𝛽) = 𝜎(𝛼) + 𝜎(𝛽)      , 𝜎(𝛼𝛽) = 𝜎(𝛼)𝜎(𝛽)  を満たすものを 

自己同型写像という。自己同型写像全体からなる集合は、写像の合成で積を 

定義すれば、群をなす。これを 𝐾 の自己同型群といい、 𝐴𝑢𝑡(𝐾) で表す。 

たとえば、 



  𝑄(√2) = {𝑎 + 𝑏√2  | 𝑎 , 𝑏 ∈ 𝑄 }  からそれ自身への自己同型写像を 𝜎 とすると、 

        𝑄(√2)  の任意の元 𝑎 + 𝑏√2   ( 𝑎 , 𝑏 ∈ 𝑄 ) に対し、 

     𝜎(𝑎 + 𝑏√2) = 𝜎(𝑎) + 𝜎(𝑏√2) = 𝑎 + 𝑏𝜎(√2) (*) 

ここで、𝜎(√2)2 = 𝜎(√2)𝜎(√2) = 𝜎(√2√2) = 𝜎(2) = 2 

∴ 𝜎(√2) = ±√2    

∴    𝜎(𝑎 + 𝑏√2) = 𝑎 + 𝑏√2 または 𝑎 − 𝑏√2  

これより、𝜎 としては、 

                  𝑖 ∶    𝑎 + 𝑏√2   →   𝑎 + 𝑏√2    (𝑎, 𝑏 ∈ 𝑄)    (単に√2 → √2 と略記) 

                 𝜎 ∶    𝑎 + 𝑏√2   →   𝑎 − 𝑏√2    (𝑎, 𝑏 ∈ 𝑄)    (単に√2 → −√2 と略記) 

｛𝑖  , 𝜎｝が 𝑄(√2) の自己同型群 𝐴𝑢𝑡(𝑄(√2))である。 

(*) 定義から 𝜎(0) = 0    , 𝜎(1) = 1 であり 

有理数体 𝑄 の元 𝑎 に対しては 𝜎(𝑎) = 𝑎   (不変)。 

 

〔ガロア群〕 

           𝐿を𝐾の拡大体とするとき、𝐿の自己同型写像のうち、𝐾の元を不変にする      

ものは、𝐴𝑢𝑡(𝐿) の部分群をなすが、これを 𝐿 の 𝐾上のガロア群といい、 

𝐺(𝐿/𝐾)で表す。すなわち、𝐺(𝐿/𝐾)= {𝜙 ∈ 𝐴𝑢𝑡(𝐿)  | 𝜙(𝑎) = 𝑎  , 𝑎 ∈ 𝐾}   

 𝑄 の元は、どんな自己同型写像でも不変だから、𝐺(𝐿/𝑄)= 𝐴𝑢𝑡(𝐿)  

      また、体 𝐾上既約な𝑓(𝑥)の最小分解体を 𝐿 としたとき、𝐿 の𝐾上のガロア群 

             𝐺(𝐿/𝐾)を多項式𝑓(𝑥) (または方程式𝑓(𝑥) = 0 )のガロア群という。 

      たとえば、1 の原始３乗根を 𝜔 として、𝐿 = 𝑄(𝜔 , √2
3

 )   , 𝐾 = 𝑄  としたとき、 

                𝐿  の自己同型写像  𝜎 としては、{𝜎(√2
3

)}3 = 𝜎(2) = 2 より、𝜎(√2
3

) = √2
3

    , √2
3

 𝜔   , √2
3

 𝜔2 

                 {𝜎(𝜔)}3 = 𝜎(1) = 1  より、𝜎(𝜔) =  𝜔   ,    𝜔2      ( ∵   𝜎(𝜔) ≠  1 ) を考慮すると 

以下の６通りが考えられる。 

           𝜎0 = 𝑖  ∶    √2
3

   → √2
3

             , 𝜔  →    𝜔    (恒等写像) 

          𝜎1 = 𝜎  ∶    √2
3

   → √2
3

 𝜔        , 𝜔  →    𝜔   

                            𝜎2 = 𝜎2   ∶    √2
3

   → √2
3

 𝜔2     , 𝜔  →    𝜔   

                              𝜎3 =  𝜏  ∶    √2
3

   → √2
3

           , 𝜔  →    𝜔2   

                            𝜎4 =  𝜏𝜎  ∶    √2
3

   → √2
3

 𝜔2    , 𝜔    →   𝜔2   

                            𝜎5 = 𝜏𝜎2  ∶    √2
3

   → √2
3

 𝜔       , 𝜔  →    𝜔2    

𝐴𝑢𝑡(𝐿) = 𝐺(𝐿/𝐾) = { 𝑖 , 𝜎 , 𝜎2 , 𝜏  , 𝜏𝜎  , 𝜏𝜎2 }   

ここで、 𝐾1 = 𝑄(𝜔)    , 𝐾2 = 𝑄(√2
3

)  とすると 

𝐴𝑢𝑡(𝐿) の中で、𝑄(𝜔) の元を不変にするものは、{ 𝑖 , 𝜎 , 𝜎2  }であり、 

𝐺(𝐿/𝐾1) = { 𝑖 , 𝜎 , 𝜎2  } 。また、𝑄(√2
3

) の元を不変にするものは、 

{ 𝑖 , 𝜏   }であり、𝐺(𝐿/𝐾2) = { 𝑖 , 𝜏   } 。 

 



 

〔ガロアの基本定理=ガロア拡大とガロア群の関係〕 

①  𝐿 が 𝑄 のガロア拡大のとき、ガロア群𝐺 = 𝐺(𝐿/𝑄) の部分群𝐻1  , 𝐻2 には 

   それぞれ、不変体𝑀1  , 𝑀2 が(逆向きに)1 : 1 に対応する。 

       𝑄  ⊂  𝑀1  (𝑀2)   ⊂    𝐿 

        ↕           ↕       ↕                 ↕                         

       𝐺    ⊂ 𝐻1  (𝐻2)    ⊂  { 𝑖 }   

②  𝐿 が 𝑄 のガロア拡大のとき、𝐿 は 𝑀1 (𝑀2) のガロア拡大となり、 

                   [𝐿 ∶ 𝑄] = |𝐺(𝐿/𝑄) = |𝐺| 

                   [𝐿 ∶ 𝑀1] = |𝐺(𝐿/𝑀1) = |𝐻1| 

                   [𝐿 ∶ 𝑀2] = |𝐺(𝐿/𝑀2) = |𝐻2| 

          ↑                                         ↑       

        拡大次数      位数 

     たとえば、 

𝐿 = 𝑄(𝜔 , √2
3

 )  (1 の原始３乗根を 𝜔 ) とし、𝑀1 = 𝑄(𝜔)  , 𝑀2 = 𝑄(√2
3

) としたとき、 

「𝜎 ∶   √2
3

   → √2
3

 𝜔     , 𝜔  →    𝜔 」,「𝜏 ∶  √2
3

   → √2
3

     , 𝜔  →    𝜔2」とすれば 

 𝐺(𝐿/𝑄) = { 𝑖 , 𝜎 , 𝜎2 , 𝜏  , 𝜏𝜎  , 𝜏𝜎2 }      [𝐿 ∶ 𝑄] = |𝐺(𝐿/𝑄) = |𝐺| = 6 

                         𝐺(𝐿/𝑀1) = { 𝑖 , 𝜎 , 𝜎2  } = 𝐻1                  [𝐿 ∶ 𝑀1] = |𝐺(𝐿/𝑀1) = |𝐻1| = 3 

                        𝐺(𝐿/𝑀2) = { 𝑖 , 𝜏   } = 𝐻2             [𝐿 ∶ 𝑀2] = |𝐺(𝐿/𝑀2) = |𝐻2| = 2 

   

〔巡回群と巡回拡大〕 

    <巡回群> 

  たった 1 つの元 𝑎 から生成される群のことで、< 𝑎 > などと表す。 

  < 𝑎 >= {⋅⋅⋅⋅⋅⋅ 𝑎−3, 𝑎−2, 𝑎−1, 𝑖 , 𝑎, 𝑎2, 𝑎3,⋅⋅⋅⋅⋅⋅⋅⋅}    

( 𝑖 は恒等写像、𝑎−2は 𝑎−1 を 2 回、 𝑎3は 𝑎 を３回演算することを意味する) 

     𝐴3 = {(
123
123

) , (
123
231

) , (
123
312

) } = {𝑖 , 𝜎 , 𝜎2}  は、 

位数 3 の巡回群で 、< 𝜎 >と書ける。 

<巡回拡大> 

   ガロア群が巡回群になるようなガロア拡大のことをいう。 

1 の原始３乗根を 𝜔 としたとき、( 𝜔3 = 1 , 𝜔 ≠ 1  , 𝜔2 + 𝜔 + 1 = 0  )    

       𝑄 上の既約多項式 𝑓(𝑥) = 𝑥2 + 𝑥 + 1 = 0  は、 

𝑄(𝜔) = { 𝑎 + 𝑏𝜔 | 𝑎 , 𝑏 ∈ 𝑄} 上で、𝑓(𝑥) = (𝑥 − 𝜔 )(𝑥 − 𝜔2 )  と分解 

されるので、𝑄(𝜔) は、𝑄  のガロア拡大であり、さらに 

  そのガロア群 𝐺(𝑄(𝜔)/𝑄) としては、𝜎(𝜔)3 = 1より、 

𝜎(𝜔) = 𝜔  , 𝜔2   (𝜎(𝜔) ≠ 1) なので、 



                       𝜎0 = 𝑖  ∶    𝜔  →    𝜔   

      𝜎1 = 𝜎  ∶   𝜔  →   𝜔2 が考えられ、𝐺(𝑄(𝜔)/𝑄) = { 𝑖  , 𝜎 } (位数 2 の巡回群) 

  したがって、𝑄(𝜔) は、𝑄  の巡回拡大。 

 

〔ベキ根拡大〕 

   体 𝐹 上の既約多項式 𝑓(𝑥) = 𝑥𝑛 − 𝑎 = 0 の根(解)をベキ根(累乗根)という。 

  𝐹 が 1 の原始 𝑛 乗根 𝜁 を含んでいるとき、𝐹 に 1 つのベキ根√𝑎𝑛    (𝑎 ∈ 𝐹) を 

  添加した体 𝐹( √𝑎𝑛  ) を𝐹 のベキ根拡大という。 

    このとき、 𝐹( √𝑎𝑛  ) は𝐹 の巡回拡大でもある。 

     𝜔 を 1 の原始３乗根とし、𝐹 = 𝑄(𝜔) とすれば、𝐹( √2
3

) = 𝑄(𝜔 , √2
3

 ) は、 

  𝐹 のベキ根拡大であり、ガロア拡大でもあるし巡回拡大でもある。 

 

〔可解群〕 

  𝐺 を群とする。 

𝐺 の部分群の減少列、𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇∙∙∙∙∙∙∙∙∙⊇ 𝐺𝑟 = { 1 } =(単位群)が 

あって、𝐺𝑖+1は 𝐺𝑖  の正規部分群(*)で、剰余群(**) 𝐺𝑖+1/ 𝐺𝑖 が可換群 

(巡回群)となっているとき、𝐺 を可解群という。 

    (*) 𝐻 が 𝐺 の正規部分群とは、𝐻 が 𝐺 の部分群で任意の 𝜎 ∈ 𝐺 に対し、 

𝜎𝐻 = 𝐻𝜎 が成り立つことである。このことの代わりに 

『 𝜎 ∈ 𝐺   , 𝑥 ∈ 𝐻  ならば、𝜎𝑥𝜎−1 ∈ 𝐻  が成り立つとき』としてもよい 

𝑆3 = {(
123
123

) , (
123
231

) , (
123
312

)  , (
123
132

)  , (
123
321

)  , (
123
213

)} (３次対称群)の 

部分群、𝐴3 = {(
123
123

) , (
123
231

) , (
123
312

) }  (３次交代群)は、 

  𝑆3  の正規部分群である。 

  このことは、たとえば、𝜏 = (
123
132

) ∈ 𝑆3 に対して 

  𝜏 (
123
123

) = (
123
132

) (
123
123

) = (
123
132

)      , (
123
123

) 𝜏 = (
123
132

)   

             𝜏 (
123
231

) = (
123
132

) (
123
231

) = (
123
321

)      , (
123
231

) 𝜏 = (
123
213

)      

             𝜏 (
123
312

) = (
123
132

) (
123
312

) = (
123
213

)      , (
123
312

) 𝜏 = (
123
321

)    

         ∴   𝜏𝐴3 = 𝐴3𝜏   (記号=は、集合として等しいことを意味する)  

 



 

   (**) 剰余群（商群） 

𝐻 が 𝐺 の正規部分群であるとき、𝐺 の𝐻 に対する商集合、 

𝐺 𝐻⁄ = {𝑔𝐻 | 𝑔 ∈ 𝐺}  は、演算 (𝑔1𝐻)(𝑔2𝐻) = (𝑔1𝑔2)𝐻  

(ただし、𝑔1  , 𝑔2 ∈ 𝐺 )によって群となる。 

これを𝐺 の𝐻 による剰余群（商群）という。 

たとえば、𝑆3 と 𝐴3 において、𝜎 = (
123
231

)     𝜏 = (
123
132

)  とおくと、 

            𝐺 = 𝑆3 = {𝑖 , 𝜎 , 𝜎2 , 𝜏 , 𝜏𝜎 , 𝜏𝜎2}   , 𝐻 = 𝐴3 = {𝑖 , 𝜎 , 𝜎2}  であり 

      𝐺 𝐻⁄ = {𝐻  , 𝜏𝐻 }  である。（𝐺 𝐻⁄  の単位元は 𝐻 である） 

 

    <可解群の例> 

① 可換群 𝐺 は、可解群である。 

𝐺 ⊇ { 1 } の部分群列を考えればよい 

② 𝑆3 (３次対称群)は、可解群である。  

     𝑆3  ⊇ 𝐴3 ⊇ { 1 }   (𝐴3は３次交代群)を考えればよい 

                            𝐴3 は 𝑆3 の、{ 1 } は 𝐴3のそれぞれ正規部分群であり、 

                          𝑆3/𝐴3 は、位数 2 の巡回群で、𝐴3/{ 1 } = 𝐴3  は、位数 3 の巡回群で 

いずれも可換群。 

③ 𝑆4 (4 次対称群)は、可解群である。  

     𝑆4  ⊇ 𝐴4 ⊇ 𝑉 ⊇ { 1 }   (𝐴4は 4 次交代群)を考えればよい 

ここで、 

     𝐴4 = { (
1234
1234

) , (
1234
2314

) , (
1234
3124

)  , (
1234
2431

)  , (
1234
4132

)  , (
1234
3241

)   ,                 

                   (
1234
4213

) , (
1234
1342

) , (
1234
1423

)  , (
1234
2143

)  , (
1234
3412

)  , (
1234
4321

) } 

                                    = {  𝑖   , (1  2  3), (1  3  2), (1  2  4), (1  4  2), (1  3  4) , 

                   (1  4  3), (2  3  4), (2  4  3) , (1  2)(3  4) , (1  3)(2  4) , (1  4)(2  3) } 

   = { 𝑖  , (𝑘  𝑙  𝑚)  ,   (𝑘  𝑙)(𝑚  𝑛) }   (ただし𝑘, 𝑙, 𝑚, 𝑛は異なる 1～4 の数) 

  𝑆4 = {   𝐴4  , (1 2),    (1 3),    (1 4),    (2 3),     (2 4),     (3 4),  

       (1 2 3 4),(1 2 4 3),(1 3 2 4),(1 3 4 2),(1 4 2 3),(1 4 3 2)  } 

             = { 𝐴4  ,   (𝑘  𝑙) , (𝑘  𝑙  𝑚  𝑛) } 

    𝑉 = {(
1234
1234

) , (
1234
2143

) , (
1234
3412

)  , (
1234
4321

) }     (𝐾𝑙𝑒𝑖𝑛の４元群) 

                                    = {  𝑖  , (1  2)(3  4) , (1  3)(2  4) , (1  4)(2  3) } 

                = {  𝑖   , (𝑘  𝑙)(𝑚  𝑛)  }    



次のことなどから、 𝐴4 は 𝑆4 の正規部分群で、𝑉 は、 𝐴4の正規部分群である。 

“   (𝑘  𝑛)  , (𝑘  𝑙  𝑚  𝑛) ∈ 𝑆4   , (𝑘  𝑙  𝑚) ∈ 𝐴4  に対し、 

         (𝑘  𝑛)−1(𝑘  𝑙  𝑚)(𝑘  𝑛) = (𝑙  𝑚  𝑛) ∈ 𝐴4    

                                  (𝑘  𝑙  𝑚  𝑛)−1(𝑘  𝑙  𝑚)(𝑘  𝑙  𝑚  𝑛) = (𝑘  𝑙  𝑛) ∈ 𝐴4   “ 

“  (𝑘  𝑙  𝑚)  ∈ 𝐴4   , (𝑘  𝑙)(𝑚  𝑛) ∈ 𝑉  に対し、 

                       (𝑘  𝑙  𝑚)−1(𝑘  𝑙)(𝑚  𝑛)(𝑘  𝑙  𝑚) = (𝑘  𝑚)(𝑙  𝑛) ∈ 𝑉   “ 

また、 

  𝑆4/𝐴4 = {  𝐴4  , (1  2)𝐴4 }   , 𝐴4/𝑉 = { 𝑉  , (1  2  3)𝑉  , (1  3  2)𝑉  } 

なので、 𝑆4/𝐴4 は、位数 2 の巡回群(可換群)で、 

𝐴4/𝑉  は、位数 3 の巡回群(可換群)。 

𝑉/{1 } = 𝑉  は、位数 4 の可換群 

④ 𝑝  を素数としたとき、 

群 𝐺  の位数 𝑝 であるならば、𝐺  は巡回群、従って可換群 

であって可解群である。 

 

 

ここから、代数的可解性 

 

有理数体 𝑄 内に係数をもつ(𝑄 上の)既約方程式 𝑓(𝑥) = 0 が『代数的に可解で 

ある』とは、𝑓(𝑥) = 0  の係数に加減乗除とベキ根(累乗根)を有限回施して、 

𝑓(𝑥) = 0  の根(解)が得られることであり、それらの根が、それらの根を形作る 

ベキ根をすべて含む体に含まれることである。 

  言い換えると、 

  𝑄 上の既約多項式 𝑓(𝑥) において、𝑄 から始まるベキ根拡大列 

  𝑄 = 𝑄0 ⊆ 𝑄1 ⊆ 𝑄2 ⊆∙∙∙∙∙∙∙∙⊆ 𝑄𝑟 = 𝛺  （𝑄𝑖+1は 𝑄𝑖 のベキ根拡大）があって 

  𝑓(𝑥) の分解体 𝐿 が 𝛺  に含まれることである。 

  たとえば、 

  𝑄 上の既約方程式 𝑓(𝑥) = 𝑥6 − 10𝑥3 + 23 = (𝑥3 − 5)2 − 2 = 0  は、𝑄 内に 

根(解)を持たないが、𝛼2 = 2  , 𝛽3 = 5 + 𝛼 としたとき、𝑄(𝛼 , 𝛽) 内で、解 

𝑥 = √5 ± √2
3

    , √5 ± √2
3

 ∙ 𝜔    , √5 ± √2
3

 ∙ 𝜔2  を持つ。 

このとき、𝑄 が 1 の原始３乗根 𝜔 を含んでいるとして、(𝑄(𝜔) → 𝑄 ) 

  ベキ根拡大の列、𝑄 ⊆ 𝑄(𝛼) ⊆ 𝑄(𝛼 , 𝛽) = 𝛺  が得られ、 

  当然、𝑓(𝑥) の分解体 𝑄(𝛼 , 𝛽) = 𝐿 ⊆ 𝛺 である。  



 

〔ガロアの定理〕 

    〖 𝑓(𝑥)  を 𝑄 上の既約多項式、 𝐿 を𝑓(𝑥) の分解体とし、𝐺 = 𝐺(𝐿/𝑄) を 

   𝑓(𝑥) のガロア群とするとき、𝑓(𝑥) = 0 が四則演算とベキ根で解ける 

   (代数的に可解である)ための必要十分条件は、𝐺 が可解群となること 

   である。〗  

𝐴5 は単純群(正規部分群として、それ自身と単位群{ 1 } しかもたない群) 

     であることから、𝑆5 の部分群列は、𝑆5 ⊇ 𝐴5 ⊇ { 1 } となるが、 

   𝐴5 = 𝐴5/{ 1 } は可換群ではない(*) 

     したがって、𝑆5 は可解群でない。 

(*) 反例をあげると、 𝐴5 ∋ 𝜎 = (1  2  3), 𝜏 = (1 2 3 4 5) に対し 

    𝜎𝜏 = (1 2 3)(1 2 3 4 5) = ( 1 3 4 5 2) 

          𝜏𝜎 = (1 2 3 4 5)(1 2 3) = (1 3 2 4 5)   ∴ 𝜎𝜏 ≠ 𝜏𝜎 

 

 

   これより、一般には５次方程式を四則演算とベキ根だけを使って 

解くことはできないが、以下の 𝐹20  , 𝐷10   , 𝐶5  (**)をガロア群にもつ 

５次方程式は、   𝐹20  ⊇ 𝐷10 ⊇ 𝐶5 ⊇ { 1 } を考えれば、 

    𝐹20/𝐷10 = { 𝐷10   , (2 3 5 4)𝐷10 }      (2 3 5 4)=(
12345
13524

) ∈奇置換 

                 𝐷10/𝐶5 = {  𝐶5    , (2 5)(3 4)𝐶5  }          (2 5)(3 4) =  (
12345
15432

) ∈偶置換 

であって、𝐹20 以下は、可解群であって、四則演算とベキ根だけを 

使って解くことができる。 

 

(**)   𝐹20   … 位数 20 の群 

   { (
12345

12345
)  (

12345

23451
)  (

12345

34512
) (

12345
45123

)  (
12345
51234

) 

                      (
12345
15432

)  (
12345
32154

)  (
12345
54321

) (
12345
21543

)  (
12345
43215

) 

              (
12345
13524

)  (
12345
24135

)  (
12345
35241

) (
12345
41352

)  (
12345
52413

) 

             (
12345
14253

)  (
12345
25314

)  (
12345
31425

) (
12345
42531

)  (
12345
53142

)  } 

      これは、置換 𝜎 = (
12345
23451

)   と 𝜏 = (
12345
13524

) よって生成される群で 

      実際に {  𝑖  , 𝜎  , 𝜎2  , 𝜎3 , 𝜎4,   𝜏  , 𝜏2  , 𝜏3  , 𝜏𝜎  , 𝜏𝜎2, 𝜏𝜎3, 𝜏𝜎4 ,   



            𝜏2𝜎  , 𝜏2𝜎2  , 𝜏2𝜎3  , 𝜏2𝜎4  , 𝜏3𝜎  , 𝜏3𝜎2 , 𝜏3𝜎3  , 𝜏3𝜎4   }  である。 

                          𝐷10   … 位数 10 の群 

  これは正五角形の回転や鏡映によって得られるもの。 

 

                                                           

                                                                               

                                                                        

                                                                          

                                                                          

{(
12345
12345

)  (
12345
23451

)  (
12345
34512

) (
12345
45123

)  (
12345
51234

)                                   

(
12345
15432

)  (
12345
32154

)  (
12345
54321

) (
12345
21543

)  (
12345
43215

) }                              

                        𝐶5   … 位数 5 の巡回群                                                      

           {(
12345
12345

)  (
12345
23451

)  (
12345
34512

) (
12345
45123

)  (
12345
51234

) } 

 

 

   𝐶5 や𝐹20 をガロア群にもつ５次方程式の解 

 

① 𝐶5  をガロア群にもつ、 

𝑓(𝑥) = 𝑥5 + 𝑥4 − 12𝑥3 − 21𝑥2 + 𝑥 + 5 = 0   (＃) の解 

 

𝑓(𝑥) ≡ (𝑥 + 25)5       (𝑚𝑜𝑑  31 ) となることを踏まえて。 

    1 の原始 31 乗根を  𝜁 としたとき、(つまり、 𝜁31 = 1  , 𝜁 ≠ 1 より 

                     𝜁30 + 𝜁29 +∙∙∙∙∙∙∙∙∙∙∙∙∙∙ +𝜁 + 1 = 0   )  𝑄(𝜁) の 𝑄 上のガロア群 𝐺 = 𝐺(𝑄(𝜁)/𝑄) は 

位数 30 の巡回群である。すなわち、 

              𝜎 ∶  𝜁 → 𝜁3       , 𝜁2 → 𝜁6     , 𝜁3 → 𝜁9      , 𝜁4 → 𝜁12   , 𝜁5 → 𝜁15 

                           𝜁6 → 𝜁18    , 𝜁7 → 𝜁21   , 𝜁8 → 𝜁24    , 𝜁9 → 𝜁27   , 𝜁10 → 𝜁30 

                           𝜁11 → 𝜁2    , 𝜁12 → 𝜁5   , 𝜁13 → 𝜁8    , 𝜁14 → 𝜁11  , 𝜁15 → 𝜁14 

                           𝜁16 → 𝜁17   , 𝜁17 → 𝜁20  , 𝜁18 → 𝜁23   , 𝜁19 → 𝜁26  , 𝜁20 → 𝜁29 

                           𝜁21 → 𝜁       , 𝜁22 → 𝜁4    , 𝜁23 → 𝜁7    , 𝜁24 → 𝜁10  , 𝜁25 → 𝜁13 

                           𝜁26 → 𝜁16   , 𝜁27 → 𝜁19   , 𝜁28 → 𝜁22   , 𝜁29 → 𝜁25  , 𝜁30 → 𝜁28 

         とすれば、 

        𝐺 = { 𝑖  , 𝜎  , 𝜎2 , 𝜎3 , … … … … , 𝜎29}         (𝜎30 = 𝑖) 

1 

2 5 

3

1

4

1 



         このうち.、位数が 6 となる部分群は、 

     𝐻 = { 𝑖  , 𝜎5  , 𝜎10   , 𝜎15   , 𝜎20   , 𝜎25  }だけで         𝑄(𝜁)… {𝑖}     

     これに対応する 𝑄(𝜁) と 𝑄 の中間体を 𝑀 とすれば     6 |    6 | 

      𝐺 は、巡回群だからその部分群 𝐻 も巡回群で         𝑀 … 𝐻   30 

     可換である(ゆえに𝐻は𝐺の正規部分群) から           5 |   5 | 

                       𝑀 は 𝑄 の５次の巡回拡大である。                    𝑄  … 𝐺  

         𝑓(𝑥) = 0 の 1 つの解を 𝛼 とすれば、𝑀 = 𝑄(𝛼)  (𝐻 による不変体)であり 

       𝛼 = 𝑖(𝜁) + 𝜎5(𝜁) + 𝜎10(𝜁) + 𝜎15(𝜁) + 𝜎20(𝜁) + 𝜎25(𝜁)   

              = 𝜁 + 𝜁26 + 𝜁25 + 𝜁30 + 𝜁5 + 𝜁6  

              = 𝜁 + 𝜁5 + 𝜁6 + 𝜁25 + 𝜁26 + 𝜁30      (= 𝛼1)  

           他の解は、 

     𝜎(𝛼1) = 𝜁3 + 𝜁15 + 𝜁18 + 𝜁13 + 𝜁16 + 𝜁28  (= 𝛼2) 

                       𝜎(𝛼2) = 𝜁9 + 𝜁14 + 𝜁23 + 𝜁8 + 𝜁17 + 𝜁22  (= 𝛼3) 

                       𝜎(𝛼3) = 𝜁27 + 𝜁11 + 𝜁7 + 𝜁24 + 𝜁20 + 𝜁4  (= 𝛼4) 

                       𝜎(𝛼4) = 𝜁19 + 𝜁2 + 𝜁21 + 𝜁10 + 𝜁29 + 𝜁12  (= 𝛼5)   

    

      (＃) 巡回群 𝐶5をもつこの方程式の作り方 

      1 の原始 31 乗根を  𝜁 としたとき、  

                        𝑄(𝜁) の 𝑄 上ガロア群 𝐺 = 𝐺(𝑄(𝜁)/𝑄) は位数 30 の巡回群で 

あり、  𝜎 ∶  𝜁 → 𝜁3  , 𝜁2 → 𝜁6  , ⋯ ⋯ ⋯ , 𝜁29 → 𝜁25, 𝜁30 → 𝜁28   

とすれば、𝐺 = { 𝑖  , 𝜎  , 𝜎2 , 𝜎3 , … … … … , 𝜎29}         (𝜎30 = 𝑖) 

            このうち.、位数が 6 となる部分群は、 

      𝐻 = { 𝑖  , 𝜎5  , 𝜎10   , 𝜎15   , 𝜎20   , 𝜎25  }だけで         𝑄(𝜁)… {𝑖}     

      これに対応する 𝑄(𝜁) と 𝑄 の中間体を 𝑀 とすれば     6 |   6 | 

       𝐺 は、巡回群だからその部分群 𝐻 も巡回群で         𝑀 … 𝐻  

      可換である(ゆえに𝐻は𝐺の正規部分群) から           5 |   5 | 

 𝑀 は 𝑄 の５次の巡回拡大である。                    𝑄  … 𝐺  

            また、 

      𝜂1 = 𝑖(𝜁) + 𝜎5(𝜁) + 𝜎10(𝜁) + 𝜎15(𝜁) + 𝜎20(𝜁) + 𝜎25(𝜁)   

              = 𝜁 + 𝜁26 + 𝜁25 + 𝜁30 + 𝜁5 + 𝜁6  

              = 𝜁 + 𝜁5 + 𝜁6 + 𝜁25 + 𝜁26 + 𝜁30  (= 𝛼1 ) 

            とすれば、𝑀 = 𝑄(𝜂
1
)  (𝐻 による不変体)であり、𝜂1 と次の 

      𝜂2 = 𝜎(𝜂1) = 𝜁3 + 𝜁15 + 𝜁18 + 𝜁13 + 𝜁16 + 𝜁28  (= 𝛼2) 

                            𝜂3 = 𝜎(𝜂2) = 𝜁9 + 𝜁14 + 𝜁23 + 𝜁8 + 𝜁17 + 𝜁22  (= 𝛼3) 

                            𝜂4 = 𝜎(𝜂3) = 𝜁27 + 𝜁11 + 𝜁7 + 𝜁24 + 𝜁20 + 𝜁4  (= 𝛼4) 

                            𝜂5 = 𝜎(𝜂4) = 𝜁19 + 𝜁2 + 𝜁21 + 𝜁10 + 𝜁29 + 𝜁12  (= 𝛼5)  は、 



      𝑀 の 𝑄 上の正規底(*)である。 

𝜂1 の𝑄 上の次数が最小の多項式𝑓(𝑥)は、(𝑀/𝑄) = 5 であるから 

      𝑓(𝑥) の次数は 5 であり、 

      𝑓(𝑥) = (𝑥 − 𝜂1)(𝑥 − 𝜂2)(𝑥 − 𝜂3)(𝑥 − 𝜂4)(𝑥 − 𝜂5)  

           ここで、コンピュ－タ－の助けを借りると 

        𝜂1 + 𝜂2 + 𝜂3 + 𝜂4 + 𝜂5 = −1 

                             𝜂1𝜂2 + 𝜂1𝜂3 + ⋯ ⋯ ⋯ ⋯ ⋯ + 𝜂4𝜂5 = −12 

                             𝜂1𝜂2𝜂3 + 𝜂1𝜂2𝜂4 + ⋯ ⋯ ⋯ ⋯ ⋯ + 𝜂3𝜂4𝜂5 = 21 

                             𝜂1𝜂2𝜂3𝜂4 + 𝜂1𝜂2𝜂3𝜂5 + ⋯ ⋯ ⋯ ⋯ ⋯ + 𝜂2𝜂3𝜂4𝜂5 = 1 

                             𝜂1𝜂2𝜂3𝜂4𝜂5 = −5  

∴  𝑓(𝑥) = 𝑥5 + 𝑥4 − 12𝑥3 − 21𝑥2 + 𝑥 + 5   

           これで式が作れた。 

     なお、  𝑓(𝑥) のガロア群 𝐺 = 𝐺(𝑀/𝑄) = 𝐺(𝑄(𝜂1)/𝑄) は、 

     先の 𝑄(𝜁)の自己同型写像 𝜎 を 𝑄(𝜂1)上に制限した 

      𝜎 ∶   𝜂1 → 𝜂2   , 𝜂2 → 𝜂3   , 𝜂3 → 𝜂4   , 𝜂4 → 𝜂5   , 𝜂5 → 𝜂1   

によって、𝐺 = { 𝑖  , 𝜎 , 𝜎2 , 𝜎3 , 𝜎4  } ≅ 𝐶5   

 

(*) 正規底 

𝑀 が 𝑄 のガロア拡大であるとし、そのガロア群を 

𝐺(𝐵/𝑄) = { 𝜎1 , 𝜎2 , ⋯ ⋯ ⋯ , 𝜎𝑛 } とすると、𝑀 の元 𝜂 で 

(𝜎1(𝜂) , 𝜎2(𝜂) , ⋯ ⋯ ⋯ , 𝜎𝑛(𝜂) )が𝑄上の基底（生成系で 

あって１次独立）となるものがある。つまり、 

                               𝑀 = {𝑎1 𝜎1(𝜂) + 𝑎2𝜎2(𝜂) + ⋯ ⋯ ⋯ + 𝑎𝑛𝜎𝑛(𝜂)  |  𝑎𝑖 ∈ 𝑄} 

このとき、(𝜎1(𝜂) , 𝜎2(𝜂) , ⋯ ⋯ ⋯ , 𝜎𝑛(𝜂) )を 

𝑀 の 𝑄 上の正規底という。 

たとえば、𝑀 = 𝑄(√2)としたとき、𝑀 の 𝑄 上の正規底は、 

1 + √2  と 1 − √2 である。 

         実際、𝐺(𝑀/𝑄) = { 𝜎1 , 𝜎2  } において 

              （ただし、𝜎1 ∶ √2 → √2    , 𝜎2 ∶  √2 → −√2  ) 

              𝑀 の元 𝜂 = 1 + √2 は、𝜎1(𝜂) = 1 + √2 , 𝜎2(𝜂) = 1 − √2   

              これらは、𝑄 上の基底である。 

         ∵ 𝑎(1 + √2) + 𝑏(1 − √2) = 0 ⇔   𝑎 = 𝑏 = 0 

                  また、{𝑎(1 + √2 + 𝑏(1 − √2)  | 𝑎  , 𝑏 ∈ 𝑄} 

                        = { 𝑎1 + 𝑎2√2  | 𝑎1 , 𝑎2 ∈ 𝑄} 

                                                       = 𝑄(√2)                       (終)    



 

 

      一般に、 

    5𝑘 + 1 = 𝑝 (素数)となる(𝑘 = 1,2, … . )ように、𝑝 を選んだとき、 

    1 の原始 𝑝 乗根を 𝜁 とすれば、𝐿 = 𝑄(𝜁) の 𝑄 上ガロア群 𝐺 は 

位数 𝑝 − 1  (= 5𝑘) の巡回群である。        𝐿  … {𝑖}     

    そして、位数 𝑘 の 𝐺 の部分群 𝐻に           𝑘|     𝑘| 

    対応する 𝐿と 𝑄の中間体𝑀は、𝑄の               𝑀  … 𝐻   5𝑘 = 𝑝 − 1 

5 次の巡回拡大である。            5 |    5 |      

    𝑀 = 𝑄(𝜂)とすれば、(𝑀/𝑄) = 5            𝑄  …   𝐺   

        であるから、𝜂 の𝑄上５次の最小 

    多項式が得られる。                              

𝑝 = 31   (𝑘 = 6)としたものが、上記のもので、 

ほかに、𝑝 = 11   (𝑘 = 2)とすれば、 

        𝑓(𝑥) = 𝑥5 + 𝑥4 − 4𝑥3 − 3𝑥2 + 3𝑥 + 1  (= 0) が得られる。                  

ほかに、𝑝 = 41   (𝑘 = 8)とすれば、 

        𝑓(𝑥) = 𝑥5 + 𝑥4 − 16𝑥3 + 5𝑥2 + 21𝑥 − 9  (= 0) が得られる。                  

 

   𝑄 上既約な５次方程式 𝑓(𝑥) = 0 が、ガロア群 𝐷10  , (𝐹20) を持つ場合 

  𝑓(𝑥) = 0 の 1 つの解を 𝛼 としたとき、𝑄(𝜔𝑝 , 𝜔5)(𝛼) が𝑄(𝜔𝑝 , 𝜔5) 

    の巡回拡大となるような、素数 𝑝 = 2𝑡 + 1  , (𝑝 = 4𝑡 + 1) が存在する。 

(ただし、𝜔𝑝 , 𝜔5は、それぞれ 1 の原始 𝑝 , 5 乗根を意味する) 

 

②  𝐹20  をガロア群にもつ、 

                  𝑓(𝑥) = 𝑥5 − 20𝑥3 − 60𝑥2 − 70𝑥 − 30 = 0    の解 

 

    （   𝑓(𝑥) ≡ 𝑥5     (𝑚𝑜𝑑  5) となることを踏まえて） 

𝑓(𝑥) = 0 の 1 つの解を 𝛼 とし、         𝐿 = 𝑄(𝛾, 𝛼) ⋯ { 𝑖 }  

𝑓(𝑥) の分解体を 𝐿 、             5|              | 

    𝛾 を(𝑄(𝛾)/𝑄) = 4 を満たすものとする。  20  𝑀=𝑄(𝛾)  ⋯   𝐶5 

𝑓(𝑥) ≡ 𝑥5      (𝑚𝑜𝑑  5) となることから    4 |             | 

    𝑄(𝛾) ⊆ 𝑄(𝜔5) であり、𝑄(𝛾) = 𝑄(𝜔5)       𝑄       ⋯    𝐹20 

(ただし、𝜔5 は、1 の原始５乗根 ) 

これより、 

𝐿 = 𝑄(𝜔5, 𝛼) となって 𝐿 は 𝑀 = 𝑄(𝜔5) の巡回拡大 

𝐿 の 𝑀上のガロア群は巡回群。 



    𝑓(𝑥) = 0 の解を 𝛼 = 𝛼1 , 𝛼2 , 𝛼3 , 𝛼4 , 𝛼5  とし、 

                    𝑢(𝛼 ,1) = 𝛼1 + 𝜔5𝛼2 + 𝜔5
2𝛼3 + 𝜔5

3𝛼4 + 𝜔5
4𝛼5  

              𝑢(𝛼 ,2) = 𝛼1 + 𝜔5
2𝛼2 + 𝜔5

4𝛼3 + 𝜔5𝛼4 + 𝜔5
3𝛼5 

    𝑢(𝛼 ,3) = 𝛼1 + 𝜔5
3𝛼2 + 𝜔5𝛼3 + 𝜔5

4𝛼4 + 𝜔5
2𝛼5  

    𝑢(𝛼 ,4) = 𝛼1 + 𝜔5
4𝛼2 + 𝜔5

3𝛼3 + 𝜔5
2𝛼4 + 𝜔5𝛼5   

                  𝑢(𝛼 ,5) = 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5     (= 0)   とおくと、 

     𝑢(𝛼 , 𝑘)5 ∈ 𝑀    (𝑘 = 1,2, … ,5)   

        𝑢(𝛼 ,1)𝑢(𝛼 ,4) ∈ 𝑀     , 𝑢(𝛼 ,2)𝑢(𝛼 ,3) ∈ 𝑀 などが得られ、 

    𝑢(𝛼 ,1) = 5(√2
5

)2𝜔5   

                     𝑢(𝛼 ,2) = 5(√2
5

)4𝜔5
2 

                     𝑢(𝛼 ,3) = 5(√2
5

)1𝜔5
3 

                   𝑢(𝛼 ,4) = 5(√2
5

)3𝜔5
4   と求まる。 

これによって 

                     𝛼1 =
𝑢(𝛼 ,1) + 𝑢(𝛼 ,2) + 𝑢(𝛼 ,3) + 𝑢(𝛼 ,4) + 𝑢(𝛼 ,5)

5
   

        = (√2
5

)
2

𝜔5 + (√2
5

)
4

𝜔5
2 + (√2

5
)

1
𝜔5

3 + (√2
5

)
3

𝜔5
4   

        他の解は、 

         𝛼2 =  (√2
5

)1𝜔5 + (√2
5

)2𝜔5
2 + (√2

5
)3𝜔5

3 + (√2
5

)4𝜔5
4 

                  𝛼3 =  (√2
5

)4𝜔5 + (√2
5

)3𝜔5
2 + (√2

5
)2𝜔5

3 + (√2
5

)1𝜔5
4 

                  𝛼4 =  (√2
5

)3𝜔5 + (√2
5

)1𝜔5
2 + (√2

5
)4𝜔5

3 + (√2
5

)2𝜔5
4 

                      𝛼5 =  (√2
5

)1      + (√2
5

)2         + (√2
5

)3        + (√2
5

)4   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2  ルンゲの定理 
  C.Runge (1856-1927)の「Uber die auflosbaren Gleichungen  

von der 𝐹𝑜𝑟𝑚  𝑥5 + 𝑢𝑥 + 𝑣 = 0  , 1885 」によると、 

『 𝜆   , 𝜇  を有理数とするとき、 

𝑥5 +
5𝜇4(4𝜆+3)

𝜆2+1
 𝑥 +

4𝜇5(2𝜆+1)(4𝜆+3)

𝜆2+1
= 0  は代数的に解ける 』 

   （概要） 

    𝜆   , 𝜇  を与え、 

    𝑢 =
5𝜇4(4𝜆+3)

𝜆2+1
      , 𝑣 =

4𝜇5(2𝜆+1)(4𝜆+3)

𝜆2+1
  とおくと 

    与式は、𝑥5 + 𝑢𝑥 + 𝑣 = 0  となる。 

        ここで、 

    𝑙 =
5𝜇4(4𝜆+3)2

𝜆2+1
    とすると 

    (𝑙 − 𝑢)4(𝑙2 − 6𝑢𝑙 + 25𝑢2) = 55𝑣4𝑙   が成り立つ。 

    （代入して確かめるとよい） 

    そして、𝑙 =
𝑧2

4
  で置き換えると 

    (𝑧2 − 4𝑢)4(𝑧4 − 24𝑢𝑧2 + 400𝑢2) = 4555𝑣4𝑧2   

        さらに、𝐷 = 44𝑢5 + 55𝑣4  で置き換えると 

    (𝑧6 − 20𝑢𝑧4 + 240𝑢2𝑧2 + 320𝑢3)2 = 45𝑧2𝐷   

     ∴ 𝑧6 − 20𝑢𝑧4 + 240𝑢2𝑧2 + 320𝑢3 = ±32𝑧√𝐷    

      この方程式の６根 (  𝑧1 , 𝑧2 , 𝑧3 , 𝑧4 , 𝑧5 , 𝑧6 ) は、 

   𝑥5 + 𝑢𝑥 + 𝑣 = 0  の５根を 𝛼0 , 𝛼1 , 𝛼2 , 𝛼3 , 𝛼4  とし、 

   𝑛1 = 𝛼0𝛼1 + 𝛼1𝛼2 + 𝛼2𝛼3 + 𝛼3𝛼4 + 𝛼4𝛼0 

                𝑛2 = 𝛼0𝛼2 + 𝛼2𝛼1 + 𝛼1𝛼4 + 𝛼4𝛼3 + 𝛼3𝛼0 

                𝑛3 = 𝛼1𝛼2 + 𝛼2𝛼4 + 𝛼4𝛼0 + 𝛼0𝛼3 + 𝛼3𝛼1 

                 𝑛4 = 𝛼2𝛼0 + 𝛼0𝛼4 + 𝛼4𝛼1 + 𝛼1𝛼3 + 𝛼3𝛼2 

                 𝑛5 = 𝛼3𝛼2 + 𝛼2𝛼4 + 𝛼4𝛼1 + 𝛼1𝛼0 + 𝛼0𝛼3 

                 𝑛6 = 𝛼4𝛼2 + 𝛼2𝛼0 + 𝛼0𝛼1 + 𝛼1𝛼3 + 𝛼3𝛼4 

                      𝑚1 = 𝛼0𝛼2 + 𝛼0𝛼3 + 𝛼1𝛼3 + 𝛼1𝛼4 + 𝛼2𝛼4    

𝑚2 = 𝛼0𝛼1 + 𝛼0𝛼4 + 𝛼1𝛼3 + 𝛼2𝛼3 + 𝛼2𝛼4     

                       𝑚3 = 𝛼0𝛼1 + 𝛼0𝛼2 + 𝛼2𝛼3 + 𝛼3𝛼4 + 𝛼1𝛼4 

                       𝑚4 = 𝛼0𝛼1 + 𝛼0𝛼3 + 𝛼1𝛼2 + 𝛼2𝛼4 + 𝛼3𝛼4 

                       𝑚5 = 𝛼0𝛼2 + 𝛼0𝛼4 + 𝛼1𝛼2 + 𝛼1𝛼3 + 𝛼3𝛼4 



                        𝑚6 = 𝛼0𝛼3 + 𝛼0𝛼4 + 𝛼1𝛼2 + 𝛼1𝛼4 + 𝛼2𝛼3 

        としたとき、 

     𝑧1 = 𝑛1 − 𝑚1    , 𝑧2 = 𝑛2 − 𝑚2   , ⋯ ⋯ ⋯ , 𝑧6 = 𝑛6 − 𝑚6    

        で表される。 

      𝑧 = 2√𝑙    (または− 2√𝑙 ) は、この内の 1 つであるから 

      いま仮に、𝑧 = 2√𝑙 = 𝑧1 と考えれば 

      𝑛1 + 𝑚1 =  𝑛2 + 𝑚2 

                                       = ⋯ ⋯ ⋯ 

                                       = 𝑛6 + 𝑚6   

                                       = 𝛼0𝛼1 + 𝛼1𝛼2 + 𝛼2𝛼3 + 𝛼3𝛼4 + 𝛼4𝛼0  

                                               +𝛼0𝛼2 + 𝛼0𝛼3 + 𝛼1𝛼3 + 𝛼1𝛼4 + 𝛼2𝛼4   

= 0    (解と係数との関係)  と 

        𝑧1 = 𝑛1 − 𝑚1     とにより、 

        𝑧1 = 2𝑛1 = 2√𝑙    

         ∴ 𝑛1 = √𝑙  (= −𝑚1)  

         ∴ 𝛼0𝛼1 + 𝛼1𝛼2 + 𝛼2𝛼3 + 𝛼3𝛼4 + 𝛼4𝛼0 

     = −(  𝛼0𝛼2 + 𝛼0𝛼3 + 𝛼1𝛼3 + 𝛼1𝛼4 + 𝛼2𝛼4   ) 

          =  
√5𝜇2(4𝜆+3)

√𝜆2+1
 

          これと、解(根)と係数との関係、 

 

   𝛼0 + 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = 0  

       𝛼0𝛼1 + 𝛼0𝛼2 + ⋯ ⋯ ⋯ ⋯ ⋯ + 𝛼3𝛼4 = 0 

                      𝛼0𝛼1𝛼2+𝛼0𝛼1𝛼3 + ⋯ ⋯ ⋯ ⋯ + 𝛼2𝛼3𝛼4 = 0 

                      𝛼0𝛼1𝛼2𝛼3 + 𝛼0𝛼1𝛼2𝛼4 + ⋯ ⋯ ⋯ + 𝛼1𝛼2𝛼3𝛼4    = 𝑢 

                      𝛼0𝛼1𝛼2𝛼3𝛼4  = −𝑣  

        を併用すると、 𝛼0 , 𝛼1 , 𝛼2 , 𝛼3 , 𝛼4  が求まるはず。   (終) 

 

 

なお、『 𝜆   , 𝜇  を有理数とするとき、 

                 𝑥5 +
5𝜇4(4𝜆+3)

𝜆2+1
 𝑥 +

4𝜇5(2𝜆+1)(4𝜆+3)

𝜆2+1
= 0  は、𝐹20 内にガロア群をもつ 』 

が示されている。 

たとえば、 

①  𝜇 = 1   , 𝜆 = 4/3 のとき、 



𝑥5 + 15𝑥 + 44 = 0   が得られるがこの方程式のガロア群は 

𝐹20  に同型であって、代数的に可解である。 

        ② 𝜇 = 1   , 𝜆 = 1/2 のとき、 

𝑥5 + 20𝑥 + 32 = 0   が得られるがこの方程式のガロア群は 

𝐷10  に同型であって、代数的に可解である。 

 

      なお、ルンゲが示した式と似ているが 

   1944 年、Spearman と Williams によって 

      『 𝑐   , 𝑒  を有理数、𝜀 = ±1 とするとき 

      𝑥5 +
5𝑒4(3−4𝜖𝑐)

𝑐2+1
 𝑥 −

4𝑒5(11𝜖+2𝑐)

𝑐2+1
= 0  は 

代数的に解ける 』 が証明されている。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3  エルミ－トの解法 

      楕円積分 𝑢 = ∫
𝑑𝑡

√(1−𝑡2)(1−𝑘2𝑡2)

𝑥

0
  の逆関数を 𝑥 = 𝑠𝑛(𝑢, 𝑘)  、 

あるいは、単に 𝑥 = 𝑠𝑛 𝑢 で表す。(𝑘 を母数という) 

     また、𝐾 = ∫
𝑑𝑡

√(1−𝑡2)(1−𝑘2𝑡2)
= ∫

𝑑𝜃

√1−𝑘2𝑠𝑖𝑛2𝜃

𝜋

2
0

1

0
    

                 𝐿 = ∫
𝑑𝑡

√(1−𝑡2)(1−𝑙2𝑡2)
= ∫

𝑑𝜃

√1−𝑙2𝑠𝑖𝑛2𝜃

𝜋

2
0

1

0
  

 (ただし、𝑘2 + 𝑙2 = 1 で、𝑙  を補母数という) 

    とおくと、 

  𝑠𝑛(𝑢 + 4𝐾) = 𝑠𝑛 𝑢      , 𝑠𝑛(𝑢 + 2𝑖𝐿) = 𝑠𝑛 𝑢   となり、 

𝛼 = 4𝐾   , 𝛼′ = 2𝑖𝐿  は基本周期とよばれる。 

  𝑘  , 𝑙  より、𝐾  , 𝐿 が求まるが、逆に、比 𝐿/𝐾 により 𝑘  , 𝑙  も定まる。 

  すなわち、𝑖 の文字は虚数単位を表すとして 

  𝜔 =
𝑖𝐿

𝐾
    , 𝑞 = 𝑒𝑖𝜋𝜔 = 𝑒

−𝜋𝐿

𝐾     とすれば 

  √𝑘
4

= √2 √𝑞8 ∑
𝑞2𝑚2+𝑚

𝑞𝑚2
𝑚=∞
𝑚=−∞  

                 = √2 √𝑞8  
1+𝑞+𝑞3+𝑞6+𝑞10+𝑞15+𝑞21+𝑞28+𝑞36+⋯⋯⋯

1+2𝑞+2𝑞4+2𝑞9+2𝑞16+2𝑞25+2𝑞36+⋯⋯⋯
        

     が得られ、これらは、𝜔 の関数とも思えるから 

  √𝑘
4

= 𝜙(𝜔)   とおける。 

   一方、𝐽𝑎𝑐𝑜𝑏𝑖 (独 1804 − 1851) によって得られた楕円積分の 

変換原理によれば、 

   『 任意の奇数 𝑛 , 任意の数 𝑘  に対し、𝑦 =
𝑈(𝑥)    ⋯ ⋯⋯𝑛次奇多項式

𝑉(𝑥)   ⋯⋯𝑛−1 次偶多項式
 と        

      するとき、 
𝑑𝑦

√(1−𝑦2)(1−𝑙2𝑦2)
= 𝑀 ∙

𝑑𝑥

√(1−𝑥2)(1−𝑘2𝑥2)
     が成立する 

   ような定数 𝑙  , 𝑀 が存在する 』 

       実際、𝑛 = 3   の場合、 

     𝑦 =
(𝑣+2𝑢3)𝑣𝑥+𝑢6𝑥3

𝑣2+𝑢3(2𝑣+𝑢3)𝑥2    とすれば、 



                    
𝑑𝑦

√(1−𝑦2)(1−𝑙2𝑦2)
=

𝑢+2𝑢3

𝑣
∙

𝑑𝑥

√(1−𝑥2)(1−𝑘2𝑥2)
     が成り立つ 

ただし、𝑢 = √𝑘
4

     , 𝑣 = √𝑙
4

  であり、𝑢 と 𝑣 の間には 

𝑢4 − 𝑣4 + 2𝑢𝑣(1 − 𝑢2𝑣2) = 0  の関係式が成り立つ 

(この母数 𝑘 , 𝑙 の変換前後の関係式をモジュラ－方程式という) 

 

        𝑛 = 5  の場合のモジュラ－方程式は、 

                       𝑢6 − 𝑣6 + 5𝑢2𝑣2(𝑢2 − 𝑣2) + 4𝑢𝑣(1 − 𝑢4𝑣4) = 0 

で与えられ、𝑢 = √𝑘
4

= 𝜙(𝜔)  とし、𝑣 についての式 

                       𝑣6 + 4𝑢5𝑣5 + 5𝑢2𝑣4 − 5𝑢4𝑣2 − 4𝑢𝑣 − 𝑢6 = 0 

とみたとき、その６根は、 

      𝑣0 = −𝜙(5𝜔)    , 𝑣𝑚+1 =  𝜙 (
𝜔+16𝑚

5
)    (𝑚 = 0,1,2,3,4) 

        で表される。 

          𝑣0 は、√𝑘
4

= 𝜙(𝜔) = √2 √𝑞8 ∑
𝑞2𝑚2+𝑚

𝑞𝑚2
𝑚=∞
𝑚=−∞  

                            = √2 √𝑞8  
1 + 𝑞 + 𝑞3 + 𝑞6 + 𝑞10 + 𝑞15 + 𝑞21 + 𝑞28 + 𝑞36 + ⋯ ⋯ ⋯

1 + 2𝑞 + 2𝑞4 + 2𝑞9 + 2𝑞16 + 2𝑞25 + 2𝑞36 + ⋯ ⋯ ⋯
   

の式において 

     𝑞 = 𝑒𝑖𝜋𝜔 = 𝑒
−𝜋𝐿

𝐾   なので、𝑞 の代わりに 𝑞5 を代入し符号を 

     変えたものだし、𝑣𝑚+1  (𝑚 = 0,1,2,3,4) は、𝑞 の代わりに 

                      𝑞
1

5 ∙ (𝑒
16𝜋𝑖

5 )
𝑚

=  𝑞
1

5 ∙ (𝑒
6𝜋𝑖

5 )
𝑚

    (𝑚 = 0,1,2,3,4)  を代入したものである。 

      いま、 

   𝛷0(𝜔) = (𝑣1 − 𝑣0)(𝑣2 − 𝑣5)(𝑣3 − 𝑣4)  

                         𝛷1(𝜔) = (𝑣2 − 𝑣0)(𝑣3 − 𝑣1)(𝑣4 − 𝑣5) 

                         𝛷2(𝜔) = (𝑣3 − 𝑣0)(𝑣4 − 𝑣2)(𝑣5 − 𝑣1) 

                         𝛷3(𝜔) = (𝑣4 − 𝑣0)(𝑣5 − 𝑣3)(𝑣1 − 𝑣2) 

                         𝛷4(𝜔) = (𝑣5 − 𝑣0)(𝑣1 − 𝑣4)(𝑣2 − 𝑣3) 

         とおき、 

     (𝑦 − 𝛷0(𝜔))(𝑦 − 𝛷1(𝜔))(𝑦 − 𝛷2(𝜔))(𝑦 − 𝛷3(𝜔))(𝑦 − 𝛷4(𝜔)) = 0 

         を作ると、これは、５次方程式、 

     𝑦5 − 2000𝑢4(1 − 𝑢8)
2

𝑦 



             −1600√5 𝑢3(1 − 𝑢8)
2

(1 + 𝑢8) = 0  を満たす。 

    さらに、 

      𝑦 = √2000
4

 𝑢√1 − 𝑢8 ∙  𝑥   とおくと、 

      𝑥5 − 𝑥 −
2(1+𝑢8)

√554
 𝑢2√1−𝑢8

= 0    

      これにより、𝑥5 − 𝑥 − 𝑎 = 0  の形の５次方程式を解くには 

   （一般の５次方程式は、理論的には、チルンハウス変換などによって 

     この形に変形できるので、これだけ解ければ十分である。） 

    
2(1+𝑢8)

√554
 𝑢2√1−𝑢8

= 𝑎  とし、𝐴 = √554
 𝑎 /2  とおくと、 

      𝑢 = √𝑘
4

    より 𝑢2 = √𝑘   , 𝑢8 = 𝑘2   で 

    𝑘4 + 𝐴2𝑘3 + 2𝑘2 − 𝐴2𝑘 + 1 = 0  が得られる。 

     これは、 

     (𝑘 − 𝑘−1)2 + 𝐴2(𝑘 − 𝑘−1) + 4 = 0  と変形でき、 

     𝑘 − 𝑘−1 = (−𝐴2 ± √𝐴4 − 16 ) / 2   から、𝑘 の値が求まる。 

    そして、これより、√𝑘
4

= 𝜙(𝜔) が決まり 

                    𝑣0 = −𝜙(5𝜔)    , 𝑣𝑚+1 =  𝜙 (
𝜔 + 16𝑚

5
)     (𝑚 = 0,1,2,3,4) 

    を求めれば、（ここが代数的ではない） 

    𝛷0(𝜔)  , 𝛷1(𝜔) ,  𝛷2(𝜔) ,  𝛷3(𝜔) ,  𝛷4(𝜔)  が求まる。 

    そのとき、 

    𝑥 =
𝑦

√2000
4

 𝑢√1−𝑢8
=

𝛷𝑚(𝜔)

√2000
4

 √𝑘
4

√1−𝑘2
   (𝑚 = 0,1,2,3,4) が 

        𝑥5 − 𝑥 − 𝑎 = 0  の解である。 

      

 

 

 

 

 

 

 

 

 

 



【例】 エルミ－トの解法によって、𝑆5 をガロア群にもつ 

     𝑥5 − 80𝑥 + 192 = 0  の解（近似値）を求めてみる 

    ただし、コンピュ－タ－の助けが必要である 

    

（解法）   

   𝑥 = √80
4

 𝑦  とおくと、 

   𝑦5 − 𝑦 +
6

( √5
4

)5
 = 0     

     ここで、
6

( √5
4

)5
=  −𝑎   と考えると、 

   𝐴 =
( √5

4
)

5
𝑎

2
 =

( √5
4

)
5

2
∙

−6

( √5
4

)
5  =  −3        (∴ 𝐴2 = 9) 

     これより、 

   𝑘4 + 9𝑘3 + 2𝑘2 − 9𝑘 + 1 = 0  を解いて、その 1 つを 

   𝑘 = (−9 + √65 + 3√18 − 2√65 )/4    

       = 0.792676910548   

      𝑘2 = 0.628336684515      

     ∴ 𝑙2 = 1 − 𝑘2 =  0.371663315485   

     これより、 

               𝐾 = ∫
𝑑𝜃

√1 − 𝑘2𝑠𝑖𝑛2𝜃

𝜋
2

0

= 1.98142022191    

     𝐿 = ∫
𝑑𝜃

√1−𝑙2𝑠𝑖𝑛2𝜃

𝜋

2
0

=1.7583631759 

      𝜋 = 3.14159265359 

      𝑞 = 𝑒(−
𝜋𝐿

𝐾
) = 0.06154848886 … .. 

      よって、 

   𝑞1 = 𝑞5 = 0.000000883256766 

      𝑞2 = 𝑞
1

5 = 0.57258963071 

    ここで、𝑡 = 𝑒
6𝜋𝑖

5 = −0.80901699437 − 0.58778525229 ∙ 𝑖 とし、 

               𝑞3 = 𝑡 ∙ 𝑞
1
5 = −0.46323474205 − 0.33655974055 𝑖      

               𝑞4 = 𝑡2 ∙ 𝑞
1
5 = 0.17693992669 + 0.54456509945 𝑖 

               𝑞5 = 𝑡3 ∙ 𝑞
1
5 = 0.17693992669 − 0.54456509945 𝑖 



               𝑞6 = 𝑡4 ∙ 𝑞
1
5 = −0.4632347420 + 0.33655974055 𝑖 

  ここで、 

            𝑓(𝑥) = √2 √𝑞8  
1+𝑞+𝑞3+𝑞6+𝑞10+𝑞15+𝑞21+𝑞28+𝑞36+⋯⋯⋯

1+2𝑞+2𝑞4+2𝑞9+2𝑞16+2𝑞25+2𝑞36+⋯⋯⋯
   、 

            √2 = 1.41421356237  とし、𝑓(𝑥) の 𝑥 の値に 𝑞1 を代入し 

  符号を変えたものを 𝑣0  ,  𝑞2  から 𝑞6  を代入したものを 

   𝑣1  , ⋯ ⋯ , 𝑣5  とすれば、 

     𝑣0 = −0.24761416533 

             𝑣1 = 0.9999999589 

             𝑣2 = −1.216395910 + 1.426726636 𝑖 

  𝑣3 = −0.655689043 + 0.617161841 𝑖 

             𝑣4 = −0.655689043 − 0.617161841 𝑖 

             𝑣5 = −1.216395910 − 1.426726636 𝑖 

   〖ここで注意：  

   𝑣2 の計算の中では、√𝑞3
8  の代わりに√𝑞3

8 ∙ 𝑖 を用いている 

   𝑣3 の計算の中では、√𝑞4
8  の代わりに√𝑞4

8 ∙ (−√−𝑖 ) を用いている 

   𝑣4 の計算の中では、√𝑞5
8  の代わりに√𝑞5

8 ∙ (−√𝑖 ) を用いている 

 𝑣5 の計算の中では、√𝑞6
8  の代わりに√𝑞6

8 ∙ (−𝑖 ) を用いている   〗 

 

    これらと 𝑥 = √80
4

 𝑦   , 𝑘 = 0.792676910548 とにより、 

     𝑥1 = √80
4

 𝑦1 = √80
4

∙
(𝑣1−𝑣0)(𝑣2−𝑣5)(𝑣3−𝑣4)

√2000
4

√𝑘
4

√1−𝑘2
= −3.41622296  

       𝑥2 = √80
4

 𝑦2 = √80
4

∙
(𝑣2−𝑣0)(𝑣3−𝑣1)(𝑣4−𝑣5)

√2000
4

√𝑘
4 √1−𝑘2

= 2.17843088 − 0.83500826 𝑖 

              𝑥3 = √80
4

 𝑦3 = √80
4

∙
(𝑣3 − 𝑣0)(𝑣4 − 𝑣2)(𝑣5 − 𝑣1)

√2000
4

√𝑘
4

√1 − 𝑘2
= −0.47031941 − 3.17880674 𝑖 

              𝑥4 = √80
4

 𝑦4 = √80
4

∙
(𝑣4 − 𝑣0)(𝑣5 − 𝑣3)(𝑣1 − 𝑣2)

√2000
4

√𝑘
4

√1 − 𝑘2
=  −0.47031941 + 3.17880674 𝑖  

              𝑥5 = √80
4

 𝑦5 = √80
4

∙
(𝑣5 − 𝑣0)(𝑣1 − 𝑣4)(𝑣2 − 𝑣3)

√2000
4

√𝑘
4

√1 − 𝑘2
= 2.17843088 + 0.83500826 𝑖   

 

 

 

 



 4  代数的解法 

 
 5 次方程式の 𝑥4 の項は簡単に消去できるので 

   𝑥5 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0   ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯(1) 

の形のものを考える。(1)の解を 𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5  とし 

                 𝜁 を 1 の原始５乗根とする。（𝜁5 = 1 , 𝜁 ≠ 1, 𝜁4 + 𝜁3 + 𝜁2 + 𝜁1 + 1 = 0 )   

                 𝑥1 = 𝑝 + 𝑞 + 𝑟 + 𝑠                               

 𝑥2 = 𝑝𝜁1 + 𝑞𝜁2 + 𝑟𝜁3 + 𝑠𝜁4                        

 𝑥3 = 𝑝𝜁2 + 𝑞𝜁4 + 𝑟𝜁1 + 𝑠𝜁3       ⋯ ⋯ ⋯ ⋯ (2) とおくと   

                 𝑥4 = 𝑝𝜁3 + 𝑞𝜁1 + 𝑟𝜁4 + 𝑠𝜁2                    

 𝑥5 = 𝑝𝜁4 + 𝑞𝜁3 + 𝑟𝜁2 + 𝑠𝜁1                       

(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)(𝑥 − 𝑥5) = 0  を展開した式と 

(1) の式の係数を比べて、(解と係数との関係) 

      𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 0   ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (3)    

   𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥1𝑥5 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥2𝑥5 + 𝑥3𝑥4 + 𝑥3𝑥5 + 𝑥4𝑥5 

                = −5(𝑝𝑠 + 𝑞𝑟) = 𝑎3     ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (4)  

               𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥2𝑥5 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 + 𝑥1𝑥4𝑥5 + 𝑥2𝑥3𝑥4 + 𝑥2𝑥3𝑥5 + 𝑥2𝑥4𝑥5 + 𝑥3𝑥4𝑥5     

                = 5(𝑝2𝑟 + 𝑝𝑞2 + 𝑞𝑠2 + 𝑟2𝑠) = −𝑎2    ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (5) 

             𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3𝑥5 + 𝑥1𝑥2𝑥4𝑥5 + 𝑥1𝑥3𝑥4𝑥5 + 𝑥2𝑥3𝑥4𝑥5  

                = −5(𝑝3𝑞 − 𝑞2𝑟2 + 𝑝𝑟3 + 𝑞3𝑠 + 𝑝𝑞𝑟𝑠 − 𝑝2𝑠2 + 𝑟𝑠3) = 𝑎1  ⋯ ⋯ ⋯ ⋯ (6) 

             𝑥1𝑥2𝑥3𝑥4𝑥5 

              = ( 𝑝5 + 𝑞5 + 𝑟5 + 𝑠5) − 5( 𝑝𝑠 − 𝑞𝑟)(𝑝2𝑟 − 𝑝𝑞2 + 𝑞𝑠2 − 𝑟2𝑠) = −𝑎0  ⋯ (7) 

    

 𝑝 , 𝑞 , 𝑟 , 𝑠   を求めるには、(3)～(6)の連立方程式を解けばよいが、 

  一般の５次方程式は代数的に解けないのでこの連立方程式も解けない。 

  ところが、代数的に解ける場合は、 

  {25(𝑝𝑠 − 𝑞𝑟)}2 = 有理数  (= 𝛼  とする)   ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (8) 

 {125(𝑝2𝑟 − 𝑝𝑞2 + 𝑞𝑠2 − 𝑟2𝑠)}2 = 有理数  (= 𝛽 とする)  ⋯ ⋯ ⋯ ⋯  (9)  

となることがわかっていて、これらを追加することで  𝑝 , 𝑞 , 𝑟 , 𝑠   が 

求まり、最終的な解  𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5 が求まるというもの。 

  

    <そのために、まず 𝛼  , 𝛽 の値を求める> 



    (2)の式を  𝑝 , 𝑞 , 𝑟 , 𝑠   について解くと 

      𝑝 = (𝑥1 + 𝜁4𝑥2 + 𝜁3𝑥3 + 𝜁2𝑥4 + 𝜁1𝑥5)/5                   

 𝑞 = (𝑥1 + 𝜁3𝑥2 + 𝜁1𝑥3 + 𝜁4𝑥4 + 𝜁2𝑥5)/5                  

 𝑟 = (𝑥1 + 𝜁2𝑥2 + 𝜁4𝑥3 + 𝜁1𝑥4 + 𝜁3𝑥5)/5       ⋯ ⋯ ⋯ ⋯ (10)  

                 𝑠 = (𝑥1 + 𝜁1𝑥2 + 𝜁2𝑥3 + 𝜁3𝑥4 + 𝜁4𝑥5)/5                

  これらの式を(8)の左辺の式に代入すると、 𝛼 が  𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5 の 

    多項式で表される。これを 𝛼(𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5) と表すことにするが 

  これは、  𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5  の対称式ではない。 

  そこで、この式の  𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5 に 5!=120 通りの置換を作用させると 

    すべて異なる式になるのではなく、𝛼(𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5) と同じものが 20 個、 

 𝛼(𝑥1  , 𝑥2  , 𝑥3  , 𝑥5  , 𝑥4)と同じものが 20 個、𝛼(𝑥1  , 𝑥2  , 𝑥4  , 𝑥3  , 𝑥5)と同じものが 

20 個、𝛼(𝑥1  , 𝑥2  , 𝑥4  , 𝑥5  , 𝑥3)と同じものが 20 個、𝛼(𝑥1  , 𝑥2  , 𝑥5  , 𝑥3  , 𝑥4)と同じ 

ものが 20 個、𝛼(𝑥1  , 𝑥2  , 𝑥5  , 𝑥4  , 𝑥3)と同じものが 20 個となる。 

ここで、 

             𝑓𝛼(𝑥) = (𝑥 − 𝛼(𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5))(𝑥 − 𝛼(𝑥1  , 𝑥2  , 𝑥3  , 𝑥5  , 𝑥4)) 

                         × (𝑥 − 𝛼(𝑥1  , 𝑥2  , 𝑥4  , 𝑥3  , 𝑥5))(𝑥 − 𝛼(𝑥1  , 𝑥2  , 𝑥4  , 𝑥5  , 𝑥3)) 

                       × (𝑥 − 𝛼(𝑥1  , 𝑥2  , 𝑥5  , 𝑥3  , 𝑥4))(𝑥 − 𝛼(𝑥1  , 𝑥2  , 𝑥5  , 𝑥4  , 𝑥3)) 

を作ると、これは、𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5 の対称式であり、その係数は 

𝑎3 , 𝑎2 , 𝑎1 , 𝑎0 で表される。 

しかも当然ながら、𝑓𝛼(𝑥) = 0 の解の 1 つは、 𝛼 である。 

( 一見すると、解を求めるのに次数が 1 つ上がった６次方程式を考えるので 

矛盾するように思えるが因数分解できるので、𝛼 が求まる ) 

ちなみに、コンピュ－タ－を利用すると、 

              𝑓𝛼(𝑥) = 𝑥6 + (−200𝑎1 − 30𝑎3
2)𝑥5 

                              + (
22000𝑎1

2 − 20000𝑎0𝑎2 + 800𝑎2
2𝑎3

+2600𝑎1𝑎3
2 + 375𝑎3

4 ) 𝑥4 

                 + ⋯ ⋯ ⋯ ⋯ ⋯  (長い式になる) 

 

同じように、 

(10)の式を(9)の左辺の式に代入すると、𝛽 が  𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5 の 

     多項式で表される。これを 𝛽(𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5) と表すことにし、 

             𝑓𝛽(𝑥) = (𝑥 − 𝛽(𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5))(𝑥 − 𝛽(𝑥1  , 𝑥2  , 𝑥3  , 𝑥5  , 𝑥4)) 

                         × (𝑥 − 𝛽(𝑥1  , 𝑥2  , 𝑥4  , 𝑥3  , 𝑥5))(𝑥 − 𝛽(𝑥1  , 𝑥2  , 𝑥4  , 𝑥5  , 𝑥3)) 

                         × (𝑥 − 𝛽(𝑥1  , 𝑥2  , 𝑥5  , 𝑥3  , 𝑥4))(𝑥 − 𝛽(𝑥1  , 𝑥2  , 𝑥5  , 𝑥4  , 𝑥3)) 

     を考えると 



              𝑓𝛽(𝑥) = 𝑥6 + (−750𝑎2
2 + 2000𝑎1𝑎3)𝑥5 

                              + (

−2000000𝑎1
3 + 7500000𝑎0𝑎1𝑎2 + 234375𝑎2

4

−12500000𝑎0
2𝑎3 − 1250000𝑎1𝑎2

2𝑎3

+1500000𝑎1
2𝑎3

2 + 500000𝑎0𝑎2𝑎3
2

) 𝑥4 

                 + ⋯ ⋯ ⋯ ⋯ ⋯  （かなり長い式になる） 

     当然、   𝑓𝛽(𝑥) = 0 の解の 1 つは、 𝛽 である。 

 

 

  ＜このあと、上記で得られる 𝛼  , 𝛽 の値と(4)(5)(8)(9)の式を 

用いて、  𝑝 , 𝑞 , 𝑟 , 𝑠   を求める。 (6)(7)は検算に使う＞ 

   再度書くと、 

                      (𝑝𝑠 + 𝑞𝑟) = −𝑎3/5    ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (4)  

                      (𝑝2𝑟 + 𝑝𝑞2 + 𝑞𝑠2 + 𝑟2𝑠) = −𝑎2/5   ⋯ ⋯ ⋯ ⋯ (5) 

(𝑝𝑠 − 𝑞𝑟) = ±√𝛼 /25 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (8) 

        (𝑝2𝑟 − 𝑝𝑞2 + 𝑞𝑠2 − 𝑟2𝑠) = ±√𝛽 /125 ⋯ ⋯ ⋯ (9) 

     (4)(8)より、  

    𝑝𝑠 = (−5𝑎3 ± √𝛼 )/50  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (10) 

  𝑞𝑟 = (−5𝑎3 ∓ √𝛼 )/50  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (11) 

（複号は同順） 

     (5)(9)より、 

    𝑝2𝑟 + 𝑞𝑠2 = (−25𝑎2 ± √𝛽 )/250   ⋯ ⋯ ⋯ ⋯ (12) 

  𝑝𝑞2 + 𝑟2𝑠 = (−25𝑎2 ∓ √𝛽 )/250   ⋯ ⋯ ⋯ ⋯ (13) 

 （複号は同順） 

 また、 

  (𝑝2𝑟)(𝑞𝑠2) = (𝑝𝑠)2(𝑞𝑟) = (−5𝑎3 ± √𝛼 )
2

(−5𝑎3 ∓ √𝛼 )/125000  ⋯ (14) 

            (𝑝𝑞2)(𝑟2𝑠) = (𝑝𝑠)(𝑞𝑟)2 = (−5𝑎3 ± √𝛼 )(−5𝑎3 ∓ √𝛼 )
2

/125000   ⋯ (15) 

                               (複号は同順) 

   (12)(14)より、𝑝2𝑟   と  𝑞𝑠2  は、 

       𝑡2 − ( 
−25𝑎2±√𝛽 

250
) 𝑡 +

(−5𝑎3±√𝛼 )
2

(−5𝑎3∓√𝛼 )

125000
= 0     の２解であり、 

       𝑝2𝑟 =

( 
−25𝑎2 ± √𝛽 

250
      ) − √(

−25𝑎2 ± √𝛽 

250
)

2

−
4(−5𝑎3 ± √𝛼 )

2

(−5𝑎3 ∓ √𝛼 )
125000

2
   ⋯ (16) 



       𝑞𝑠2 =  

( 
−25𝑎2 ± √𝛽 

250
      ) + √(

−25𝑎2 ± √𝛽 

250
)

2

−
4(−5𝑎3 ± √𝛼 )

2

(−5𝑎3 ∓ √𝛼 )
125000

2
   ⋯ (17) 

    （ただし、第１項の複号と第２項の複号は、同順とは限らない）  

  また、(13)(15)より、𝑝𝑞2 と𝑟2𝑠 は、 

        𝑡2 − ( 
−25𝑎2∓√𝛽 

250
) 𝑡 +

(−5𝑎3±√𝛼 )(−5𝑎3∓√𝛼 )
2

125000
= 0  の２解であり、 

       𝑝𝑞2  =

( 
−25𝑎2 ∓ √𝛽 

250
      ) − √(

−25𝑎2 ∓ √𝛽 

250
)

2

−
4(−5𝑎3 ± √𝛼 )(−5𝑎3 ∓ √𝛼 )

2

125000

2
   ⋯ (18)  

       𝑟2𝑠 =

( 
−25𝑎2 ∓ √𝛽 

250
      ) + √(

−25𝑎2 ∓ √𝛽 

250
)

2

−
4(−5𝑎3 ± √𝛼 )(−5𝑎3 ∓ √𝛼 )

2

125000

2
   ⋯ (19)  

（ただし、第１項の複号と第２項の複号は、同順とは限らない） 

これで、(11)(16)(18)の値を使えば、 

    𝑝5 =
(𝑝2𝑟)2(𝑝𝑞2)

(𝑞𝑟)2
   より、𝑝5 が求まり、 𝑝 が求まる。 

 同様に、 

𝑞5 =
(𝑝𝑞2)2(𝑞𝑠2)

(𝑝𝑠)2
   より、𝑞5 が求まり、 𝑞 が求まる。 

𝑟5 =
(𝑟2𝑠)2(𝑝2𝑟)

(𝑝𝑠)2
   より、𝑟5 が求まり、 𝑟 が求まる。 

     𝑠5 =
(𝑞𝑠2)2(𝑟2𝑠)

(𝑞𝑟)2
   より、𝑠5 が求まり、 𝑠 が求まる。 

 

こうして、𝑝𝑠 と 𝑞𝑟  , 𝑝2𝑟と 𝑞𝑠2 、𝑝𝑞2と 𝑟2𝑠 、𝑝5 , 𝑞5 , 𝑟5 , 𝑠5  が 

求まったところで、 

          −5(𝑝3𝑞 + 𝑝𝑟3 + 𝑞3𝑠 + 𝑟𝑠3 + 𝑝𝑞𝑟𝑠 − 𝑝2𝑠2 − 𝑞2𝑟2)     

             = −5 (

𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
+

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
+

𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
+

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟

+(𝑝𝑠)(𝑞𝑟) − (𝑝𝑠)2 − (𝑞𝑟)2

)     = 𝑎1   ⋯ ⋯ (6) 

    − ( 𝑝5 + 𝑞5 + 𝑟5 + 𝑠5) + 5( 𝑝𝑠 − 𝑞𝑟)(𝑝2𝑟 − 𝑝𝑞2 + 𝑞𝑠2 − 𝑟2𝑠) = 𝑎0  ⋯ ⋯ (7) 

となるかどうかの確認をしておく。不成立の場合は、適当に式を変え、 

 𝑝𝑠 と 𝑞𝑟 、 𝑝2𝑟と 𝑞𝑠2 、𝑝𝑞2と 𝑟2𝑠 の値を求め直す。 

 

こうして、𝑝, 𝑞, 𝑟 , 𝑠 が確定すれば、解として 



            𝑥1 = 𝑝 + 𝑞 + 𝑟 + 𝑠                               

            𝑥2 = 𝑝𝜁1 + 𝑞𝜁2 + 𝑟𝜁3 + 𝑠𝜁4                        

            𝑥3 = 𝑝𝜁2 + 𝑞𝜁4 + 𝑟𝜁1 + 𝑠𝜁3        

            𝑥4 = 𝑝𝜁3 + 𝑞𝜁1 + 𝑟𝜁4 + 𝑠𝜁2                    

            𝑥5 = 𝑝𝜁4 + 𝑞𝜁3 + 𝑟𝜁2 + 𝑠𝜁1      が求まる。     （終） 

 

 

  ★★ 以下、文字の扱いは前述に従うものとする ★★   

 

  (例 1)  𝑥5 − 20𝑥3 − 60𝑥2 − 70𝑥 − 30 = 0  の解 

      （この方程式のガロア群は、𝐹20 に同型） 

    

    𝑎3 = −20   , 𝑎2 = −60  , 𝑎1 = −70  , 𝑎0 = −30   

       また、 

       𝑓𝛼(𝑥) = 𝑥6 +  2 ∙ 103𝑥5 + 14 ∙ 105𝑥4 + 4 ∙ 108𝑥3 + 4 ∙ 1010𝑥2 − 16 ∙ 1010𝑥     

            = 𝑥( 𝑥5 + 2 ∙ 103𝑥4 + 14 ∙ 105𝑥3 + 4 ∙ 108𝑥2 + 4 ∙ 1010𝑥 − 16 ∙ 1010)      

    ∴ 𝑓𝛼(𝑥) = 0 から、𝑥 = 0  が得られ、𝛼 =  0    

               𝑓𝛽(𝑥) = 𝑥6 + 1 ∙ 105𝑥5 + 35 ∙ 108𝑥4 + 5 ∙ 1013𝑥3 + 25 ∙ 1016𝑥2 + (−140625 ∙ 1016)𝑥                 

               = 𝑥( 𝑥5 + 1 ∙ 105𝑥4 + 35 ∙ 108𝑥3 + 5 ∙ 1013𝑥2 + 25 ∙ 1016𝑥 + (−140625 ∙ 1016) )      

    ∴ 𝑓𝛽(𝑥) = 0 から、𝑥 = 0  が得られ、𝛽 =  0  

       これより、 

                  𝑝𝑠 = 2   

  𝑞𝑟 = 2  

また、𝑝2𝑟   と  𝑞𝑠2  は、 

     𝑡2 − 6𝑡 + 8 = 0   の 2 解で 

                           𝑝2𝑟 = 2         

                           𝑞𝑠2 = 4        

       また、𝑝𝑞2 と𝑟2𝑠  も 

  𝑡2 − 6𝑡 + 8 = 0   の 2 解で 

                           𝑝𝑞2 = 2         

                           𝑟2𝑠 =  4        

    よって、 

    𝑝5 =
(𝑝2𝑟)2(𝑝𝑞2)

(𝑞𝑟)2
=

4∙2

4
= 2           

                   𝑞5 =
(𝑝𝑞2)2(𝑞𝑠2)

(𝑝𝑠)2 =  
4 ∙ 4

4
= 4 = 22 



                   𝑟5 =
(𝑟2𝑠)2(𝑝2𝑟)

(𝑝𝑠)2 =
16 ∙ 2

4
= 8 = 23  

                   𝑠5 =
(𝑞𝑠2)2(𝑟2𝑠)

(𝑞𝑟)2 =  
16 ∙ 4

4
= 16 = 24   

             𝑝3𝑞 =
𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
= 2        , 𝑝𝑟3 =

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
= 4    , 

             𝑞3𝑠 =
𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
= 4           , 𝑟𝑠3 =

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟
= 8 

 これらを使うと (6),(7)式の 

      −5(𝑝3𝑞 + 𝑝𝑟3 + 𝑞3𝑠 + 𝑟𝑠3 + 𝑝𝑞𝑟𝑠 − 𝑝2𝑠2 − 𝑞2𝑟2)     

      = −5 (

𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
+

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
+

𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
+

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟

+(𝑝𝑠)(𝑞𝑟) − (𝑝𝑠)2 − (𝑞𝑟)2

) = −70 = 𝑎1  

と 

     −( 𝑝5 + 𝑞5 + 𝑟5 + 𝑠5) + 5( 𝑝𝑠 − 𝑞𝑟)(𝑝2𝑟 − 𝑝𝑞2 + 𝑞𝑠2 − 𝑟2𝑠) = −30 = 𝑎0   

の確認ができる。 

これより、 

 𝑝 = √2
5

   , 𝑞 = √225
   , 𝑟 = √235

   , 𝑠 = √245
      となって 

        𝑥5 − 20𝑥3 − 60𝑥2 − 70𝑥 − 30 = 0  の解は、𝜁 を 1 の原始５乗根として 

   𝑥1 = 𝑝 + 𝑞 + 𝑟 + 𝑠                               

   = √2
5

+ √225
+ √235

+ √245
   

          𝑥2 = 𝑝𝜁1 + 𝑞𝜁2 + 𝑟𝜁3 + 𝑠𝜁4 

      = √2
5

𝜁1 + √225
𝜁2 + √235

𝜁3 + √245
𝜁4             

    𝑥3 = 𝑝𝜁2 + 𝑞𝜁4 + 𝑟𝜁1 + 𝑠𝜁3            

      = √2
5

𝜁2 + √225
𝜁4 + √235

𝜁1 + √245
 𝜁3       

          𝑥4 = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

        𝑥5 = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯                 （終） 

 

 

 

 

 

 

 

 

 



 

 

(例 2)  𝑥5 − 𝑥3 − 2𝑥2 − 2𝑥 − 1 = 0  の解 

   （この方程式のガロア群は、𝐷10 に同型） 

    

    𝑎3 = −1   , 𝑎2 = −2  , 𝑎1 = −2  , 𝑎0 = −1   

       また、 

       𝑓𝛼(𝑥) = 𝑥6 + 370𝑥5 + 39975𝑥4 + 1001500𝑥3 

                                      −3250625𝑥2 − 7247768750𝑥 + 968765625       

                              = (𝑥 − 45) (𝑥5 + 415𝑥4 + 58650𝑥3 + 3640750𝑥2

+160583125𝑥 − 21528125
) 

    ∴ 𝑓𝛼(𝑥) = 0 から、𝑥 = 45  が得られ、𝛼 = 45     

                  𝑓𝛽(𝑥) = 𝑥6 + 1000𝑥5 − 750000𝑥4 + 5 ∙ 109𝑥3 

                               +3 ∙ 1012𝑥2 + 7178125 ∙ 1010𝑥 + 75625 ∙ 1014                    

                     = (𝑥 − 2000) (𝑥5 + 3000𝑥4 + 525 ∙ 104𝑥3 + 155 ∙ 108𝑥2

+34 ∙ 1012𝑥 − 378125 ∙ 1010 )            

    ∴ 𝑓𝛽(𝑥) = 0 から、𝑥 = 2000  が得られ、𝛽 =  2000  

     これより、 

      𝑝𝑠 = (5 − √45 )/50   

  𝑞𝑟 = (5 + √45 )/50   

   また、𝑝2𝑟   と  𝑞𝑠2   を 

       𝑡2 − ( 
50+√2000 

250
) 𝑡 +

(5−√45 )
2

(5+√45 )

125000
= 0  の２解と考えると、 

     𝑡2 − ( 
5+2√5 

25
) 𝑡 +

(−5+3√5 )

6250
= 0   より 

      𝑝2𝑟 = (25 + 10√5 − √1175 + 470√5)/250    

      𝑞𝑠2 =  (25 + 10√5 + √1175 + 470√5)/250    

  また、𝑝𝑞2 と𝑟2𝑠  を 

            𝑡2 − ( 
50−√2000 

250
) 𝑡 +

(5−√45 )(5+√45 )
2

125000
= 0  の２解と考えると、 

                𝑡2 − ( 
5−2√5 

25
) 𝑡 +

(−5−3√5 )

6250
= 0  より 

  𝑝𝑞2 = (25 − 10√5 − √1175 − 470√5)/250    

      𝑟2𝑠 =  (25 − 10√5 + √1175 − 470√5)/250    

  よって、 



   𝑝5 =
(𝑝2𝑟)2(𝑝𝑞2)

(𝑞𝑟)2
 

              =  − 
(−25+10√5+√1175−470√5)(−25−10√5+√1175+470√5)2

6250(5+3√5)2    (≒  −3.2383 ∙ 10−7)          

               𝑞5 =
(𝑝𝑞2)2(𝑞𝑠2)

(𝑝𝑠)2
=   

(−25 + 10√5 + √1175 − 470√5)
2

(25 + 10√5 + √1175 + 470√5)

6250(5 − 3√5)2
     (≒  0.374395 )   

               𝑟5 =
(𝑟2𝑠)2(𝑝2𝑟)

(𝑝𝑠)2
= −

(25 − 10√5 + √1175 − 470√5)
2

(−25 − 10√5 + √1175 + 470√5)

6250(5 − 3√5)2
  (≒  0.00188049 )    

               𝑠5 =
(𝑞𝑠2)2(𝑟2𝑠)

(𝑞𝑟)2
=  

(25 − 10√5 + √1175 − 470√5)(25 + 10√5 + √1175 + 470√5)2

6250(5 + 3√5)2
   (≒ 0.143725 )  

  

      𝑝3𝑞 =
𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
   , 𝑝𝑟3 =

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
    , 𝑞3𝑠 =

𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
   , 𝑟𝑠3 =

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟
 

 これらを使うと (6),(7)式の 

  −5(𝑝3𝑞 + 𝑝𝑟3 + 𝑞3𝑠 + 𝑟𝑠3 + 𝑝𝑞𝑟𝑠 − 𝑝2𝑠2 − 𝑞2𝑟2)  

      = −5 (

𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
+

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
+

𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
+

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟

+(𝑝𝑠)(𝑞𝑟) − (𝑝𝑠)2 − (𝑞𝑟)2

) = −2 = 𝑎1  

と 

     −( 𝑝5 + 𝑞5 + 𝑟5 + 𝑠5) + 5( 𝑝𝑠 − 𝑞𝑟)(𝑝2𝑟 − 𝑝𝑞2 + 𝑞𝑠2 − 𝑟2𝑠) = −1 = 𝑎0   

の確認ができる。 

  これより 

   𝑝 =  √− 
(−25+10√5+√1175−470√5)(−25−10√5+√1175+470√5)

2

6250(5+3√5)
2

5

  ≒ −0.0503574 

          𝑞 =  √
(−25 + 10√5 + √1175 − 470√5)

2

(25 + 10√5 + √1175 + 470√5)

6250(5 − 3√5)
2

5

 ≒ 0.821611 

            𝑟 = √−
(25 − 10√5 + √1175 − 470√5)

2

(−25 − 10√5 + √1175 + 470√5)

6250(5 − 3√5)2

5

  ≒ 0.285006 

            𝑠 =  √ 
(25 − 10√5 + √1175 − 470√5)(25 + 10√5 + √1175 + 470√5)2

6250(5 + 3√5)2

5

 ≒ 0.678432  

 となって、 

      𝑥5 − 𝑥3 − 2𝑥2 − 2𝑥 − 1 = 0  の解は、𝜁 を 1 の原始５乗根 



(  𝜁 = 𝑒
2𝜋𝑖

5 = −
1

4
+

√5

4
+ 𝑖√5

8
+

√5

8
  ≒ 0.309017 + 0.951057 𝑖   ) として 

   𝑥1 = 𝑝 + 𝑞 + 𝑟 + 𝑠                               

   ≒ −0.0503574 + 0.821611 + 0.285006 + 0.678432 = 1.73469   

          𝑥2 = 𝑝𝜁1 + 𝑞𝜁2 + 𝑟𝜁3 + 𝑠𝜁4 

      ≒  −0.701186 − 0.377712 𝑖           

    𝑥3 = 𝑝𝜁2 + 𝑞𝜁4 + 𝑟𝜁1 + 𝑠𝜁3            

      ≒  −0.16616 − 0.938713 𝑖    

          𝑥4 = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

        𝑥5 = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯                 （終） 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

(例 3)  𝑥5 + 15𝑥 + 44 = 0     の解 

   （この方程式のガロア群は、𝐹20 に同型） 

    

    𝑎3 = 0   , 𝑎2 = 0  , 𝑎1 = 15  , 𝑎0 = 44   

       また、 

       𝑓𝛼(𝑥) = (𝑥 − 2500) (𝑥5 − 500𝑥4 + 37 ∙ 105𝑥3 + 547 ∙ 107𝑥2

+150925 ∙ 108𝑥 − 729 ∙ 1010 ) 

        ∴ 𝑓𝛼(𝑥) = 0 から、𝑥 = 2500  が得られ、𝛼 = 2500     

                 𝑓𝛽(𝑥) == (𝑥 − 250000) (𝑥5 + 250000𝑥4 + 5575 ∙ 107𝑥3 + 11215 ∙ 1012𝑥2

+2815140625 ∙ 1012𝑥 − 741200625 ∙ 1016 ) 

    ∴ 𝑓𝛽(𝑥) = 0 から、𝑥 = 250000  が得られ、𝛽 = 250000  

   これより、 

    𝑝𝑠 = −√2500 /50 = −1    

                𝑞𝑟 = +√2500 /50 = +1   

   また、𝑝2𝑟   と  𝑞𝑠2   を 

       𝑡2 − ( 
−√250000 

250
) 𝑡 +

(−√2500 )
2

(+√2500 )

125000
= 0  の２解と考えると、 

     𝑡2 + 2𝑡 + 1 = 0   より 

    𝑝2𝑟 = −1 

      𝑞𝑠2 = −1  

  また、𝑝𝑞2 と𝑟2𝑠  を 

            𝑡2 − ( 
√250000 

250
) 𝑡 +

(−√2500 )(+√2500 )
2

125000
= 0  の２解と考えると、 

                𝑡2 − 2𝑡 − 1 = 0  より 

  𝑝𝑞2 = 1 − √2   

      𝑟2𝑠 = 1 + √2   

  よって、 

  𝑝5 =
(𝑝2𝑟)2(𝑝𝑞2)

(𝑞𝑟)2
= 1 − √2 

                  𝑞5 =
(𝑝𝑞2)2(𝑞𝑠2)

(𝑝𝑠)2
= −3 + 2√2   

                  𝑟5 =
(𝑟2𝑠)2(𝑝2𝑟)

(𝑝𝑠)2
= −3 − 2√2    

                  𝑠5 =
(𝑞𝑠2)2(𝑟2𝑠)

(𝑞𝑟)2
= 1 + √2 



 

             𝑝3𝑞 =
𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
= −1 + √2       , 𝑝𝑟3 =

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
=  1 + √2    

             𝑞3𝑠 =
𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
=   1 − √2          , 𝑟𝑠3 =

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟
= −1 − √2   

 これらを使うと (6),(7)式の 

      −5(𝑝3𝑞 + 𝑝𝑟3 + 𝑞3𝑠 + 𝑟𝑠3 + 𝑝𝑞𝑟𝑠 − 𝑝2𝑠2 − 𝑞2𝑟2)     

      = −5 (

𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
+

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
+

𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
+

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟

+(𝑝𝑠)(𝑞𝑟) − (𝑝𝑠)2 − (𝑞𝑟)2

) = 15 = 𝑎1  

と 

     −( 𝑝5 + 𝑞5 + 𝑟5 + 𝑠5) + 5( 𝑝𝑠 − 𝑞𝑟)(𝑝2𝑟 − 𝑝𝑞2 + 𝑞𝑠2 − 𝑟2𝑠) = 44 = 𝑎0   

の確認ができる。 

これより 

   𝑝 =  √1 − √2
5

  ≒ −0.838388 

          𝑞 =  √−3 + 2√2
5

 ≒ −0.702894 

            𝑟 = √−3 − 2√2
5

  ≒ −1.42269 

            𝑠 =  √1 + √2 
5

 ≒ 1.19277 

 となって、 

      𝑥5 + 15𝑥 + 44 = 0  の解は、𝜁 を 1 の原始５乗根 

(  𝜁 = 𝑒
2𝜋𝑖

5 = −
1

4
+

√5

4
+ 𝑖√5

8
+

√5

8
  ≒ 0.309017 + 0.951057 𝑖   ) として 

   𝑥1 = 𝑝 + 𝑞 + 𝑟 + 𝑠                               

   ≒ −0.838388 + (−0.702894) + (−1.42269) + 1.19277 = −1.77121   

          𝑥2 = 𝑝𝜁1 + 𝑞𝜁2 + 𝑟𝜁3 + 𝑠𝜁4 

      ≒  1.82915 − 1.50866 𝑖       

    𝑥3 = 𝑝𝜁2 + 𝑞𝜁4 + 𝑟𝜁1 + 𝑠𝜁3            

      ≒ −0.94354 − 1.87845 𝑖  

          𝑥4 = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

        𝑥5 = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯      が求まる。   （終） 

 

 

 



 

(例 4)  𝑥5 + 20𝑥 + 32 = 0     の解 

   （この方程式のガロア群は、𝐷10 に同型） 

    

    𝑎3 = 0   , 𝑎2 = 0  , 𝑎1 = 20  , 𝑎0 = 32   

       また、 

       𝑓𝛼(𝑥) = (𝑥 − 2000) (𝑥5 − 2000𝑥4 + 48 ∙ 105𝑥3 + 64 ∙ 107𝑥2

+576 ∙ 1010𝑥 − 512 ∙ 1011 ) 

        ∴ 𝑓𝛼(𝑥) = 0 から、𝑥 = 2000  が得られ、𝛼 = 2000     

                 𝑓𝛽(𝑥) == (𝑥 − 200000) (𝑥5 + 200000𝑥4 + 24 ∙ 109𝑥3 + 224 ∙ 1013𝑥2

+512 ∙ 1018𝑥 − 8192 ∙ 1021 ) 

    ∴ 𝑓𝛽(𝑥) = 0 から、𝑥 = 200000  が得られ、𝛽 = 200000  

     これより、 

    𝑝𝑠 = +√2000/50 =
2√5

5
  

  𝑞𝑟 = −√2000/50 =−
2√5

5
 

また、𝑝2𝑟  と 𝑞𝑠2 を 

           𝑡2 − ( 
√200000 

250
) 𝑡 +

(+√2000 )
2

(−√2000 )

125000
= 0   

                (  𝑡2 −
4√5

5
 𝑡 −

8√5

25
= 0   )  の２解と考えると、 

                  𝑝2𝑟 =
2

5
(√5 − √5 + 2√5 )    

                  𝑞𝑠2 =  
2

5
(√5 + √5 + 2√5 )     

また、𝑝𝑞2 と 𝑟2𝑠 を 

        𝑡2 − ( 
−√200000 

250
) 𝑡 +

(+√2000 )(−√2000 )
2

125000
= 0   

           (  𝑡2 +
4√5

5
 𝑡 +

8√5

25
= 0  )  の２解と考えると、 

               𝑝𝑞2  = −
2

5
(√5 + √5 − 2√5 ) 

                 𝑟2𝑠 = −
2

5
(√5 − √5 − 2√5 ) 

    よって、 



  𝑝5 =
(𝑝2𝑟)2(𝑝𝑞2)

(𝑞𝑟)2
= −

2

25
(√5 + √5 − 2√5 )( √5 − √5 + 2√5 )2 ≒ −0.167877 

                  𝑞5 =
(𝑝𝑞2)2(𝑞𝑠2)

(𝑝𝑠)2
=  

2
25

( √5 + √5 − 2√5 )
2

(√5 + √5 + 2√5 ) ≒ 3.73113   

                  𝑟5 =
(𝑟2𝑠)2(𝑝2𝑟)

(𝑝𝑠)2
=  

2
25

( √5 − √5 − 2√5 )
2

(√5 − √5 + 2√5 ) ≒  −0.153421 

                  𝑠5 =
(𝑞𝑠2)2(𝑟2𝑠)

(𝑞𝑟)2
=  −

2
25

(√5 − √5 − 2√5 ) ( √5 + √5 + 2√5 )
2

 ≒ −3.40983 

      𝑝3𝑞 =
𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
   , 𝑝𝑟3 =

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
    , 𝑞3𝑠 =

𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
   , 𝑟𝑠3 =

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟
 

 これらを使うと (6),(7)式の 

      −5(𝑝3𝑞 + 𝑝𝑟3 + 𝑞3𝑠 + 𝑟𝑠3 + 𝑝𝑞𝑟𝑠 − 𝑝2𝑠2 − 𝑞2𝑟2)     

      = −5 (

𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
+

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
+

𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
+

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟

+(𝑝𝑠)(𝑞𝑟) − (𝑝𝑠)2 − (𝑞𝑟)2

) = 20 = 𝑎1  

と 

     −( 𝑝5 + 𝑞5 + 𝑟5 + 𝑠5) + 5( 𝑝𝑠 − 𝑞𝑟)(𝑝2𝑟 − 𝑝𝑞2 + 𝑞𝑠2 − 𝑟2𝑠) = 32 = 𝑎0   

の確認ができる。 

これより 

   𝑝 =  √−
2

25
(√5 + √5 − 2√5 )( √5 − √5 + 2√5 )2

5

  ≒ −0.699839 

          𝑞 =  √
2

25
( √5 + √5 − 2√5 )2(√5 + √5 + 2√5 )

5

 ≒ 1.30127 

            𝑟 = √ 2
25

( √5 − √5 − 2√5 )

2

(√5 − √5 + 2√5 )
5

  ≒ −0.687348 

            𝑠 =  √−
2

25
(√5 − √5 − 2√5 )( √5 + √5 + 2√5 )

2

 
5

 ≒ −1.27805 

 となって、 

      𝑥5 + 20𝑥 + 32 = 0  の解は、𝜁 を 1 の原始５乗根 

(  𝜁 = 𝑒
2𝜋𝑖

5 = −
1

4
+

√5

4
+ 𝑖√5

8
+

√5

8
  ≒ 0.309017 + 0.951057 𝑖   ) として 

   𝑥1 = 𝑝 + 𝑞 + 𝑟 + 𝑠                               

   ≒  −0.699839 + 1.30127 + (−0.687348) + (−1.27805) = −1.363967   

          𝑥2 = 𝑝𝜁1 + 𝑞𝜁2 + 𝑟𝜁3 + 𝑠𝜁4 

      ≒  −1.10788 + 1.71879 𝑖      



    𝑥3 = 𝑝𝜁2 + 𝑞𝜁4 + 𝑟𝜁1 + 𝑠𝜁3            

      ≒ 1.78986 − 1.55143 𝑖  

          𝑥4 = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

        𝑥5 = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯                 （終） 

 

 

 

 

(例 5)     𝑥5 − 110𝑥3 − 55𝑥2 + 2310𝑥 + 979 = 0   の解 

（この方程式のガロア群は、𝐶5 に同型） 

    

    𝑎3 = −110   , 𝑎2 = −55  , 𝑎1 = 2310  , 𝑎0 = 979   

       また、 

       𝑓𝛼(𝑥) = 𝑥 (𝑥5 − 825000𝑥4 + 24578125 ∙ 104𝑥3 − 311953125 ∙ 108𝑥2

+142978515625 ∙ 1010𝑥 − 446807861328125 ∙ 1010 ) 

        ∴ 𝑓𝛼(𝑥) = 0 から、𝑥 = 0  が得られ、𝛼 = 0     

                 𝑓𝛽(𝑥)

= (𝑥 − 236328125) ( 𝑥5 − 274140625𝑥4 + 8432482910156250𝑥3 − 63516530036926269531250𝑥2

+96947815604507923126220703125𝑥 − 23144929812406189739704132080178125
) 

    ∴ 𝑓𝛽(𝑥) = 0 から、𝑥 = 236328125  が得られ、𝛽 = 236328125  

     これより、 

    𝑝𝑠 = 550/50 = 11      

  𝑞𝑟 = 550/50 = 11    

    また、 

    𝑝2𝑟 + 𝑞𝑠2 = (25 ∙ 55 ± √236328125 )/250 = (11 ± 55√5)/2    

  𝑝𝑞2 + 𝑟2𝑠 = (25 ∙ 55 ∓ √236328125 )/250 = (11 ∓ 55√5)/2   

      （複号同順）  

また、 

  (𝑝2𝑟)(𝑞𝑠2) = (𝑝𝑠)2(𝑞𝑟) = 1331     

            (𝑝𝑞2)(𝑟2𝑠) = (𝑝𝑠)(𝑞𝑟)2 = 1331     

                             

   これより、𝑝2𝑟と 𝑞𝑠2 を 

       𝑡2 − (
11−55√5

2
) 𝑡 + 1331 = 0     の２解とすると、 

             𝑝2𝑟 =
11 − 55√5 − 11√−50 − 10√5 

4
 



      𝑞𝑠2 =
11−55√5+11√−50−10√5 

4
      

  また、𝑝𝑞2 と𝑟2𝑠  を 

             𝑡2 − (
11+55√5

2
) 𝑡 + 1331 = 0  の２解とすると、 

               𝑝𝑞2  =
11 + 55√5 + 11√−50 + 10√5 

4
    

                𝑟2𝑠 =  
11 + 55√5 − 11√−50 + 10√5 

4
        

  これより、 

    𝑝5 =
(𝑝2𝑟)2(𝑝𝑞2)

(𝑞𝑟)2 =
(11−55√5−11√−50−10√5 )

2
(11+55√5+11√−50+10√5 )

7744
  

                  𝑞5 =
(𝑝𝑞2)2(𝑞𝑠2)

(𝑝𝑠)2
=   

(11 − 55√5 + 11√−50 − 10√5 ) (11 + 55√5 + 11√−50 + 10√5 )
2

7744
 

                  𝑟5 =
(𝑟2𝑠)2(𝑝2𝑟)

(𝑝𝑠)2
=

(11 − 55√5 − 11√−50 − 10√5 ) (11 + 55√5 − 11√−50 + 10√5 )
2

7744
  

                  𝑠5 =
(𝑞𝑠2)2(𝑟2𝑠)

(𝑞𝑟)2
=

(11 − 55√5 + 11√−50 − 10√5 )
2

(11 + 55√5 − 11√−50 + 10√5 )

7744
 

      𝑝3𝑞 =
𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
   , 𝑝𝑟3 =

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
    , 𝑞3𝑠 =

𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
   , 𝑟𝑠3 =

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟
 

 これらを使うと (6),(7)式の 

      −5(𝑝3𝑞 + 𝑝𝑟3 + 𝑞3𝑠 + 𝑟𝑠3 + 𝑝𝑞𝑟𝑠 − 𝑝2𝑠2 − 𝑞2𝑟2)     

      = −5 (

𝑝2𝑟 ∙ 𝑝𝑞2

𝑞𝑟
+

𝑝2𝑟 ∙ 𝑟2𝑠 

𝑝𝑠
+

𝑝𝑞2 ∙ 𝑞𝑠2

𝑝𝑠
+

𝑞𝑠2 ∙ 𝑟2𝑠 

𝑞𝑟

+(𝑝𝑠)(𝑞𝑟) − (𝑝𝑠)2 − (𝑞𝑟)2

) = 2310 = 𝑎1  

と 

     −( 𝑝5 + 𝑞5 + 𝑟5 + 𝑠5) + 5( 𝑝𝑠 − 𝑞𝑟)(𝑝2𝑟 − 𝑝𝑞2 + 𝑞𝑠2 − 𝑟2𝑠) = 979 = 𝑎0   

の確認ができる。 

これより 

  𝑝 =  
√(11−55√5−11√−50−10√5 )

2

(11+55√5+11√−50+10√5 )

7744

5

  ≒ −0.151715 + 3.31315 𝑖 (注 1) 



          𝑞 =  
√

  

(11 − 55√5 + 11√−50 − 10√5 ) (11 + 55√5 + 11√−50 + 10√5 )

2

7744

5

 

≒ 2.72879 − 1.88513 𝑖 

            𝑟 =
√(11 − 55√5 − 11√−50 − 10√5 ) (11 + 55√5 − 11√−50 + 10√5 )

2

7744

5

  

≒ 2.72879 + 1.88513 𝑖 

            𝑠 =  

√

 

(11 − 55√5 + 11√−50 − 10√5 )
2

(11 + 55√5 − 11√−50 + 10√5 )

7744

5

 

≒ −0.151715 − 3.31315 𝑖 

  (注 1) 

   《  𝑝5 ≒ −91.0203 + 390.853 𝑖  であり、𝑝 の値としては、 

     (−3.19788 + 0.879531 𝑖)  , (−1.82468 − 2.76957 𝑖 ) , (−0.151715 + 3.31315 𝑖) 

               (2.07016 − 2.59122 𝑖 ) , ( 3.10411 + 1.16811 𝑖 ) の５通りが考えられるが 

     𝑝 = −0.151715 + 3.31315 𝑖 を用いた。 

     𝑞  , 𝑟 , 𝑠  の値についても取捨選択している。 》 

となって、 

     𝑥5 − 110𝑥3 − 55𝑥2 + 2310𝑥 + 979 = 0  の解は、𝜁 を 1 の原始５乗根 

(  𝜁 = 𝑒
2𝜋𝑖

5 = −
1

4
+

√5

4
+ 𝑖√5

8
+

√5

8
  ≒ 0.309017 + 0.951057 𝑖   ) として 

   𝑥1 = 𝑝 + 𝑞 + 𝑟 + 𝑠                               

      ≒ (−0.151715 + 3.31315 𝑖) + (2.72879 − 1.88513 𝑖) + 

                         (2.72879 + 1.88513 𝑖) + (−0.151715 − 3.31315 𝑖) 

                   = 5.15415    

          𝑥2 = 𝑝𝜁1 + 𝑞𝜁2 + 𝑟𝜁3 + 𝑠𝜁4 

      ≒  −8.59493  

    𝑥3 = 𝑝𝜁2 + 𝑞𝜁4 + 𝑟𝜁1 + 𝑠𝜁3            

      ≒ −5.54861 

          𝑥4 = 𝑝𝜁3 + 𝑞𝜁1 + 𝑟𝜁4 + 𝑠𝜁2 

                ≒ 9.41254 

           𝑥5 = 𝑝𝜁4 + 𝑞𝜁3 + 𝑟𝜁2 + 𝑠𝜁1  

≒ −0.423148                           （終） 

 

 



★ なお、𝑥5 − 110𝑥3 − 55𝑥2 + 2310𝑥 + 979 = 0  の解は、 

   [  𝑥5 − 110𝑥3 − 55𝑥2 + 2310𝑥 + 979 ≡ 𝑥5     (𝑚𝑜𝑑 11)  ] であって、 

   1 の原始 11 乗根を 𝜉  (= 𝑒
2𝜋𝑖

11 ≒ 0.841254 + 0.540641 𝑖  )とすれば、 

   𝑥1 = 5𝜉1 + 5𝜉10 + 1   (≒ 9.41254 ) 

                           𝑥2 = 5𝜉2 + 5𝜉9 + 1     (≒    5.15415 ) 

                           𝑥3 = 5𝜉3 + 5𝜉8 + 1     (≒ −0.423148 ) 

                           𝑥4 = 5𝜉4 + 5𝜉7 + 1     (≒ −5.54861 ) 

                           𝑥5 = 5𝜉5 + 5𝜉6 + 1     (≒ −8.59493 ) 

         1 : 𝜉1 → 𝜉1  

         𝜎 ∶  𝜉1 → 𝜉2   , 𝜉2 → 𝜉4  , 𝜉3 → 𝜉6  , 𝜉4 → 𝜉8  , 𝜉5 → 𝜉10 

                                 𝜉6 → 𝜉1   , 𝜉7 → 𝜉2  , 𝜉8 → 𝜉5  , 𝜉9 → 𝜉7  , 𝜉10 → 𝜉9 

         とすれば、 

        ガロア群は、{ 1 , 𝜎 , 𝜎2 , 𝜎3 , 𝜎4 } で 

    𝑥2 = 𝜎(𝑥1)   , 𝑥4 = 𝜎2(𝑥1)  , 𝑥3 = 𝜎3(𝑥1)  , 𝑥5 = 𝜎4(𝑥1)  

 

 

(例 5：𝑓(𝑥) = 𝑥5 − 110𝑥3 − 55𝑥2 + 2310𝑥 + 979 = 0  )  の別解 

（この方程式のガロア群は、𝐶5 に同型） 

    

    ガロア群を𝐺 = { 1 , 𝜎 , 𝜎2 , 𝜎3 , 𝜎4 } とし、𝑓(𝑥) = 0  の 1 つの解を 𝛼  と 

  すると、他の解は、𝜎(𝛼)   , 𝜎2(𝛼)  , 𝜎3(𝛼)  , 𝜎4(𝛼) となる。 

 

  ＜これより、しばらく 𝑓(𝑥)  を 𝑄(𝛼 ) 上で因数分解することを考える＞（注 2） 

  𝑓(𝑥) を (𝑥 − 𝛼) で割った式を ℎ(𝑥) とすると、 

  ℎ(𝑥) = 𝑥4 + 𝛼𝑥3 + (𝛼2 − 110)𝑥2 + (𝛼3 − 110𝛼 − 55)𝑥 + 

                           𝛼4 − 110𝛼2 − 55𝛼 + 2310 

    ℎ(𝑥 + 𝛼) を計算し、 𝑥 について整理すると 

 ℎ(𝑥 + 𝛼, 𝑥) = 𝑥4 + 5𝛼𝑥3 + (10𝛼2 − 110)𝑥2 + (10𝛼3 − 330𝛼 − 55)𝑥 + 

                                       5𝛼4 − 330𝛼2 − 110𝛼 + 2310 

   ℎ(𝑥 + 𝛼) を計算し、 𝛼 について整理すると 

           ℎ(𝑥 + 𝛼, 𝛼) = 5𝛼4 + 10𝑥𝛼3 + (10𝑥2 − 330)𝛼2 + 

                                       (5𝑥3 − 330𝑥 − 110)𝛼 + 𝑥4 − 110𝑥2 − 55𝑥 + 2310   

   𝑓(𝛼) と ℎ(𝑥 + 𝛼, 𝛼) の終結式 𝑟(𝑥) を求め、因数分解すると、 （注 3） 

 𝑟(𝑥) = (−34375 + 13750𝑥 − 275𝑥3 + 𝑥5)(34375 + 13750𝑥 − 275𝑥3 + 𝑥5) × 

      (34375 + 6875𝑥 − 1375𝑥2 − 275𝑥3 + 𝑥5)(−34375 + 6875𝑥 + 1375𝑥2 − 275𝑥3 + 𝑥5) 



 ここで、各因数を 

 𝑟1(𝑥) = −34375 + 13750𝑥 − 275𝑥3 + 𝑥5  

           𝑟2(𝑥) =    34375 + 13750𝑥 − 275𝑥3 + 𝑥5   

           𝑟3(𝑥) =    34375 + 6875𝑥 − 1375𝑥2 − 275𝑥3 + 𝑥5   

         𝑟4(𝑥) = −34375 + 6875𝑥 + 1375𝑥2 − 275𝑥3 + 𝑥5     とおき、 

はじめに、ℎ(𝑥 + 𝛼, 𝑥) と 𝑟1(𝑥) ,  𝑟2(𝑥) ,  𝑟3(𝑥) ,  𝑟4(𝑥)  の最大公約式 𝐺𝐶𝐷 を 

互除法で、それぞれ、（コンピュ－タ－を駆使して）順に、求めると、 (注 4) 

（ただし、それぞれ、定数倍を無視してある） 

                 𝑥 +
−99 + 97α + 3α2 − α3

25
 

                 𝑥 +
−1276 − 71α + 94α2 + 4α3 − α4

125
 

                  𝑥 +
44 + 7α − α2

5
 

                   𝑥 +
671 + 36α − 84α2 + α3 + α4

125
 

これらより 

ℎ(𝑥 + 𝛼, 𝑥) = (𝑥 +
−99 + 97α + 3α2 − α3

25
 )(𝑥 +

−1276 − 71α + 94α2 + 4α3 − α4

125
 ) 

              × (  𝑥 +
44+7α−α2

5
 )(𝑥 +

671+36α−84α2+α3+α4

125
 ) 

   よって、 

  𝑓(𝑥) = (𝑥 − 𝛼)ℎ(𝑥) 

         = (𝑥 − α) (𝑥 − α +
−99+97α+3α2−α3

25
 )(𝑥 − α +

−1276−71α+94α2+4α3−α4

125
 ) 

× ( 𝑥 − α +
44 + 7α − α2

5
 )(𝑥 − α +

671 + 36α − 84α2 + α3 + α4

125
 ) 

＜これで、𝑓(𝑥)  が 𝑄(𝛼 ) 上で因数分解できた。＞ 

  次に、 

    𝑓(𝑥) = 0 のガロア群は、巡回群なので、{ 1 , 𝜎 , 𝜎2 , 𝜎3 , 𝜎4 } とし、 

   𝑠1 =  𝜎(𝛼) = α − 44+7α−α2

5
=  −44−2𝛼+𝛼2

5
     とおくと、 

     𝑠2 =  𝜎2(𝛼) = 𝜎(𝜎(𝛼)) = 𝛼 −
−1276−71α+94α2+4α3−α4

125
=

1276+196𝛼−94𝛼2−4𝛼3+𝛼4

125
  

             𝑠3 = 𝜎3(𝛼) = 𝛼 −
−99 + 97α + 3α2 − α3

25
=

99 − 72𝛼 − 3𝛼2 + 𝛼3

25
   



            𝑠4 =  𝜎4(𝛼) = α −
671 + 36α − 84α2 + α3 + α4

125
=

−671 + 89𝛼 + 84𝛼2 − 𝛼3 − 𝛼4

125
 

  となる。 

   そこで、𝜁 を 1 の原始５乗根とし、 

                      (  𝜁 = 𝑒
2𝜋𝑖

5 = −
1

4
+

√5

4
+ 𝑖√

5

8
+

√5

8
  ≒ 0.309017 + 0.951057 𝑖   )  

         𝑢0 = 𝛼 +  𝑠1 ∙ 1 + 𝑠2 ∙ 1 + 𝑠3 ∙ 1  + 𝑠4 ∙ 1    =   0     

     𝑢1 = 𝛼 + 𝑠1 ∙ 𝜁1 + 𝑠2 ∙ 𝜁2 + 𝑠3 ∙ 𝜁3 + 𝑠4 ∙ 𝜁4    

               𝑢2 = 𝛼 + 𝑠1 ∙ 𝜁2 + 𝑠2 ∙ 𝜁4 + 𝑠3 ∙ 𝜁1 + 𝑠4 ∙ 𝜁3 

               𝑢3 = 𝛼 + 𝑠1 ∙ 𝜁3 + 𝑠2 ∙ 𝜁1 + 𝑠3 ∙ 𝜁4 + 𝑠4 ∙ 𝜁2 

             𝑢4 = 𝛼 + 𝑠1 ∙ 𝜁4 + 𝑠2 ∙ 𝜁3 + 𝑠3 ∙ 𝜁2 + 𝑠4 ∙ 𝜁1     とおくと、 

     コンピュ－タ－を使って、 

   𝑓(𝛼) = 𝛼5 − 110𝛼3 − 55𝛼2 + 2310𝛼 + 979 = 0 ,  

   𝜁4 + 𝜁3 + 𝜁2 + 𝜁 + 1 = 0   に注意すると、 

  𝑢15 = −893750 − 687500 ∙ 𝜁 + 515625 ∙ 𝜁2 − 343750 ∙ 𝜁3   

           𝑢25 = −1409375 − 859375 ∙ 𝜁 − 1203125 ∙ 𝜁2 − 515625 ∙ 𝜁3   

           𝑢35 = −550000 + 859375 ∙ 𝜁 + 343750 ∙ 𝜁2 − 343750 ∙ 𝜁3   

           𝑢45 = −206250 + 687500 ∙ 𝜁 + 343750 ∙ 𝜁2 + 1203125 ∙ 𝜁3   

    となることから、 

  𝛼 =
𝑢0+𝑢1+𝑢2+𝑢3+𝑢4

5
 

                = 
√−893750 − 687500 ∙ 𝜁 + 515625 ∙ 𝜁2 − 343750 ∙ 𝜁35

5
   

                  + 
√−1409375 − 859375 ∙ 𝜁 − 1203125 ∙ 𝜁2 − 515625 ∙ 𝜁35

5
   

                  + 
√−550000 + 859375 ∙ 𝜁 + 343750 ∙ 𝜁2 − 343750 ∙ 𝜁35

5
   

                  + 
√−206250 + 687500 ∙ 𝜁 + 343750 ∙ 𝜁2 + 1203125 ∙ 𝜁35

5
   

      ≒ (2.72879 − 1.88513 𝑖)  + (−0.151715 − 3.31315 𝑖) 

        +(−0.151715 + 3.31315 𝑖) + (2.72879 + 1.11513 𝑖) 

               = 5.15415 

   ★（ここで、注意しておくが、） 

𝑢25 = −284439 − 1.22142 ⋅ 106 𝑖   であり、𝑢2 の値としては、 

  (−15.9894 − 4.39766 𝑖)   , ( −9.12341 + 13.8479 𝑖)   , (−0.758573 − 16.5658 𝑖 )  



            ( 10.3508 + 12.9561 𝑖 )  , (15.5206 − 5.84055 𝑖 )  の５通り考えられるが、 

              −0.758573 − 16.5658 𝑖  を選択している。 

𝑢1  , 𝑢3  , 𝑢4  の値についても取捨選択している。 

   残りの 4 つの解は、この 𝛼 の値を次式に代入すればよい。 

     𝜎(𝛼) =  −44−2𝛼+𝛼2

5
 ≒ −5.54861  

    𝜎2(𝛼) =
1276+196𝛼−94𝛼2−4𝛼3+𝛼4

125
≒ −0.423148  

          𝜎3(𝛼) =
99 − 72𝛼 − 3𝛼2 + 𝛼3

25
 ≒ −8.59493  

        𝜎4(𝛼) =
−671+89𝛼+84𝛼2−𝛼3−𝛼4

125
≒ 9.41253          (終) 

 

 

（注 2）,（注 3）,（注 4）をまとめて 

 （終結式とは） 

   𝑠 次の𝑓(𝑥) = 0  の解を 𝛼1 , 𝛼2 , … … … , 𝛼𝑠   、 𝑡 次の𝑔(𝑥) = 0  の解を 𝛽1 , 𝛽2 , … … … , 𝛽𝑡   とすれば、 

𝑓(𝑥) = 𝑎0𝑥𝑠 + 𝑎1𝑥𝑠−1 + ･･････ + 𝑎𝑠 = 𝑎0 ∏ (𝑥 − 𝛼𝑖)
𝑠

0
 

𝑔(𝑥) = 𝑏0𝑥𝑡 + 𝑏1𝑥𝑡−1 + ･･････ + 𝑏𝑡 = 𝑏0 ∏ (𝑥 − 𝛽𝑗)
𝑡

0
 

    このとき、R= 𝑎0
𝑠𝑏0

𝑡 ∏(𝛼𝑖 − 𝛽𝑗)       , (𝑖 = 1,2, … . , 𝑠) , (𝑗 = 1,2, … … , 𝑡)  を 

     𝑓(𝑥) と 𝑔(𝑥) の終結式(𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡)という。これは行列式でも求められる。 

     （定義から、𝑓(𝑥) = 0  と𝑔(𝑥) = 0  が共通解をもつ  ⟺  R=0 ）  

  

  (互除法で GCD を求める) 

具体例で示す 

 𝑓(𝑥) = 3𝑥5 + 𝑥4 − 2𝑥3 − 6𝑥2 − 2𝑥 + 4 (= 0) と  

      𝑔(𝑥) = 3𝑥4 − 5𝑥3 + 5𝑥2 − 5𝑥 + 2 (= 0)  の 

 最大公約式をユークリッドの互除法によって求めてみる。 

 𝑓(𝑥) = (𝑥 + 2)𝑔(𝑥) + 𝑟1(𝑥)     ;  𝑟1(𝑥) =  3𝑥3 − 11𝑥2 + 6𝑥   

  𝑔(𝑥) = (𝑥 + 2)𝑟1(𝑥) + 𝑟2(𝑥)    ; 𝑟2(𝑥) = 21𝑥2 − 17𝑥 + 2   

                 𝑟1(𝑥) = (
𝑥

7
−

20

49
) 𝑟2(𝑥) + 𝑟3(𝑥)    ;  𝑟3(𝑥) =

40

49
−

60𝑥

49
       



                 𝑟2(𝑥) = (
49

20
−

343𝑥

20
) 𝑟3(𝑥) + 0     

                             =
−20

49
(

49

20
−

343𝑥

20
) (3𝑥 − 2) + 0     

  これより、最大公約式は、 (3𝑥 − 2) である。 

  ★実際に、  

                𝑓(𝑥) = 3𝑥5 + 𝑥4 − 2𝑥3 − 6𝑥2 − 2𝑥 + 4 

                          = (𝑥3 − 2)(3𝑥 − 2)(𝑥 + 1) 

                𝑔(𝑥) = 3𝑥4 − 5𝑥3 + 5𝑥2 − 5𝑥 + 2  

                          = (𝑥2 + 1)(3𝑥 − 2)(𝑥 − 1)    より、GCD=(3𝑥 − 2)    

 

(𝑄(𝛼 ) 上での因数分解の要領) 

     5 次式では繁雑になるので３次式で示す。 

（５次式の場合も同様にすればできるが計算量はかなり多くなる。） 

 𝑄 上既約で、巡回群(𝐴3 = 𝐶3) をもつ、𝑓(𝑥) = 𝑥3 − 9𝑥 + 9  の解の 

1 つを 𝛼 とすると、 

   𝑓(𝑥) = (𝑥 − 𝛼)( 𝑥2 + 𝛼𝑥 + 𝛼2 − 9 )   

      ここで、ℎ(𝑥) = 𝑥2 + 𝛼𝑥 + 𝛼2 − 9  とおくと、 

   ℎ(𝑥 + 𝛼) = 𝑥2 + 3𝛼𝑥 + 3𝛼2 − 9    (= ℎℎ) 

              = 3𝛼2 + 3𝑥𝛼 + 𝑥2 − 9 

      これと、𝑓(𝛼) = 𝛼3 − 9𝛼 + 9     (= 0 )  の終結式 R を考えると、 

      R=𝑥6 − 54𝑥4 + 729𝑥2 − 729 = (𝑥3 − 27𝑥 + 27)(𝑥3 − 27𝑥 − 27)  

      𝑟1 = 𝑥3 − 27𝑥 + 27      ,   𝑟2 = 𝑥3 − 27𝑥 − 27とし、はじめに 

𝑟1と ℎℎ との最大公約式 GCD(𝑟1, ℎℎ)を互除法で考えと、 

   𝑟1 = (𝑥 − 3𝛼)ℎℎ + (6𝛼2 − 18)𝑥 + 9𝛼3 − 27𝛼 + 27 

                   𝑠1 = (6𝛼2 − 18)𝑥 + 9𝛼3 − 27𝛼 + 27 とおくと、 

     ℎℎ = (
(−9−9𝛼+3𝛼3)+(−6+2𝛼2)𝑥

12(−3+𝛼2)2 ) ∙ 𝑠1 + 0   

     これより、 

GCD(𝑟1, ℎℎ) =  
(−9−9𝛼+3𝛼3)+(−6+2𝛼2)𝑥

12(−3+𝛼2)
2        

          ここで、
1

12(−3+𝛼2)2 =
1

12
∙

1

9−9𝛼+𝛼3 =
1

12
∙

9−𝛼2

27
   

    ∴ GCD(𝑟1, ℎℎ) =
1

12
∙

9−𝛼2

27
∙ {(−9 − 9𝛼 + 3𝛼3) + (−6 + 2𝛼2)𝑥}  



=
1

324
∙ {(−162 + 36𝛼2) + (−54 + 18𝛼 + 6𝛼2)𝑥 }   

                 ここで、
1

−54+18𝛼+6𝛼2 =
15−11𝛼−𝛼2+𝛼3

54
 

=
1

324
∙ {𝑥 + (−162 + 36𝛼2) ∙ (

15 − 11𝛼 − 𝛼2 + 𝛼3

54
)} 

   これより、定数倍を無視すれば、 

GCD(𝑟1, ℎℎ) = 𝑥 + (−𝛼2 + 6) 

同様にして、 

GCD(𝑟2, ℎℎ) = 𝑥 + (𝛼2 + 3𝛼 − 6) 

     これで、 

    ℎ(𝑥 + 𝛼) = 𝑥2 + 3𝛼𝑥 + 3𝛼2 − 9 

                          = {𝑥 + (−𝛼2 + 6)}{𝑥 + (𝛼2 + 3𝛼 − 6)}     

    ∴ ℎ(𝑥) = {𝑥 + (−𝛼2 − 𝛼 + 6)}{𝑥 + (𝛼2 + 2𝛼 − 6)} 

  ∴ 𝑓(𝑥) = (𝑥 − 𝛼)ℎ(𝑥) 

                          = (𝑥 − 𝛼){𝑥 + (−𝛼2 − 𝛼 + 6)}{𝑥 + (𝛼2 + 2𝛼 − 6)}        

                                = (𝑥 − 𝛼){𝑥 − (𝛼2 + 𝛼 − 6)}{𝑥 − (−𝛼2 − 2𝛼 + 6)}      （終） 

     ★参考までに 

     𝜎(𝛼) = 𝛼2 + 𝛼 − 6  とすれば、𝛼3 − 9𝛼 + 9 = 0  に注意して 

                     𝜎2(𝛼) = 𝜎(𝜎(𝛼)) = −𝛼2 − 2𝛼 + 6 

                     𝜎3(𝛼) = 𝜎 (𝜎(𝜎(𝛼))) = 𝛼 = 1(𝛼)    となって、 

    𝑓(𝑥) = 0  のガロア群は、巡回群 { 1 , 𝜎 , 𝜎2  } だと確認できる。 
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